
Fakultät für Mathematik
Lehrstuhl für Mathematische Modelle biologischer Systeme

Inference of Gene Regulatory Networks

Master’s Thesis by Lorena Mendez

Examiner: Prof. Dr. Fabian J. Theis

Supervisor: Volker Bergen

Submission Date: September 7, 2021

München, September 7, 2021

I hereby confirm that this is my own work, and that I used only the
cited sources and materials.

Lorena Mendez

Abstract
Cell identity is defined by an underlying complex system of interactions between tran-
scription factors (TFs) and their target genes also known as Gene Regulatory Network
(GRN). The inference of gene regulatory networks is of great interest in the scientific
community and has remain as an active area of research for more than 20 years. There
are many factors involved that make the inference task extremely challenging. Some of
the limitations we have to overcome when inferring GRNs are: the destructive nature of
single-cell data, which only allows us to glimpse static snapshots of cellular states and
the assumption that correlation between expression patterns correspond to regulatory
interactions, which may lead to the detection of spurious network links. We believe that
integrating different types of information such as time, RNA velocity, scRNA-seq and
scATAC-seq data, we can overcome these challenges and will have a clearer comprehension
of the underlying regulatory processes of a cell.

This work seeks to improve the inference of GRN’s by incorporating time, scRNA-seq
and scATAC-seq data, as a first step before linking regulation with RNA velocity. Having
a temporal-dependant GRN inference method allows us to tackle one key aspect of
causality: temporal precedence, but also enables us to make a prediction about the future
state of a cell using its gene expression profiles. With an inferred future state, we could
compute cell displacements that directly relate to RNA velocities, which later could help
improve GRN inference and viceversa.

Contents
1 Introduction 1

2 Preprocessing and analysis of single-cell RNA sequencing data 3
2.1 RNA-seq protocol . 3
2.2 Preprocessing . 4
2.3 Advanced Analysis . 6

3 Preprocessing and analysis of single-cell ATAC sequencing data 9
3.1 ATAC-seq protocol . 9
3.2 Pre-analysis . 10
3.3 Core Analysis . 13
3.4 Advanced Analysis . 17

4 Modeling with neural networks 25
4.1 Fundamentals . 26

4.1.1 Parameter optimization . 27
4.1.2 Parameter initialization . 28
4.1.3 Weight Normalization . 28
4.1.4 Residual Blocks . 29
4.1.5 Early stopping . 29

4.2 Convolutional neural networks . 30
4.2.1 Convolutional layer . 30
4.2.2 Temporal convolutional neural networks 31
4.2.3 Dilated convolutions . 32
4.2.4 Depthwise separable convolutions 32
4.2.5 Attention mechanisms . 33

5 The gene thicket: a new method to infer gene regulatory networks 35
5.1 ATAC-seq data preprocessing . 35
5.2 RNA-seq data preprocessing . 37
5.3 The gene thicket . 37

5.3.1 Architecture . 37
5.3.2 Interpretability . 39
5.3.3 Sign assignment: Activation or Repression 39
5.3.4 Causal validation . 40

vii

6 Results 43
6.1 Curated Datasets . 43
6.2 Synthetic Datasets . 46
6.3 Scalability . 48
6.4 Pancreatic Endocrinogenesis . 50

7 Conclusion and outlook 53

A Metrics for network evaluation 55
A.1 Area Under the Precision Recall Curve . 55
A.2 Area Under the Receiver Operating Characteristic Curve 56

B Datasets 57
B.1 Curated Datasets . 57
B.2 Synthetic Datasets . 59

C The gene thicket: number of blocks 61

List of Figures 65

List of Tables 69

Index 69

Bibliography 71

Chapter 1

Introduction

The discovery of new cell types and cellular lineage tracing has been only possible with
single-cell expression data from singe-cell RNA-sequencing technology. Now, we wonder if
we can also infer the underlying gene regulatory networks (GRNs), which control cellular
differentiation and are the drivers of cell type transitions. GRNs are represented as
graphs, which nodes symbolize genes and edges indicate the existing direct regulatory
relationships between two genes. Ideally, the edges have a direction, a weight and a
sign. The direction indicates which gene is regulating another gene, the weight reflects
the strength of the relationship, and the sign corresponds to either activation (+) or
inhibition (-).

Inferring a GRN has many challenges, being causality the main one. For that reason, it
has been an active field of research for many years, and there already exist several GRN
inference approaches based on single-cell expression data. Some authors developed GRN
inference methods based on tree ensemble methods, for example, GENIE3 [IWG+10] (top
performer in the DREAM4 In Silico network challenge) and GRNBOOST2 [Moe+19].
Other approaches are based on mutual information, like PIDC [CSB17], or on correlation,
like PPCOR [Kim15]. Since GRNs are related to the development of cells through time,
there have been an increasing number of approaches that incorporate pseudotemporal
ordering. For example, regression-based methods like SINCERITIES [PG+18] and
GRNVBEM [SC+18], algorithms using ordinary differential equations like SCODE
[Mat+17] and GRISLI [AFV20], SINGE [Des+21] based on Granger causality, LEAP
[SL17] based on correlation, or SCRIBE [Qiu+18] based on mutual information.
Deep learning was an unpopular approach to infer GRNs because they are difficult

to interpret. But now, with the development of interpretability methods and the fast
paced progress in deep learning, an increasing number of GRN inference algorithms
based on neural networks have been developed. For example, CNNC [YBJ19] and
DeepDRIM [Che+21] use convolutional neural networks to infer relationships from an
image of a histogram from each pair of genes in a supervised way; Neural Granger
Causality [Tan+18] uses either a recurrent neural network or a multilayer perceptron with
sparsity-inducing penalties to infer causal gene interactions; and GRGRNN [Wan+20]
infers GRNs expressing them as a graph classification problem using supervised and
semi-supervised graph neural networks.

1

Chapter 1 Introduction

Although single-cell expression data is promising for computing GRNs, there are
additional difficulties that we must consider when working with this data. Some of these
challenges are: high sparsity due to dropouts [KSS14], effects related to the cell-cycle
[Bue+15], cellular heterogeneity [WRY16] and variation in sequencing depth among the
cells. For this reason, recently developed algorithms integrate different complementary
data sources to improve the discovery of causal relationships. This is known as multi-view
learning and has already proven to be more informative in GRN inference (e.g. [Zhu+08],
[Hec+09] and [AAG14]). From this idea, SCENIC [Aib+17] was created. SCENIC
integrates iRegulon [Ver+15] ranking databases and makes use of different algorithms:
either GENIE3 [IWG+10] or GRNBoost2 [Moe+19] to infer putative regulatory links,
RcisTarget [Imr+15] and iRegulon databases to construct regulons and AUCell to estimate
regulon (subgraph of a transcription factor and its target genes) activities
More recently, ATAC-seq data has become popular among scientists, as it provides

key insights for gene regulation and requires less cells, time and money than previous
technologies for epigenomic readouts. So far, not many methods integrate scATAC-seq
data to infer GRNs, as far as we know CellOracle [KHM20] is a pioneer doing that.
The main idea of CellOracle is to infer the expression of every gene as a linear function
of the expression of its respective transcription factors (TFs) to be able to simulate
cell identity after perturbation. This algorithm can be summarized in the following
steps: (1) detection of putative TF-gene bonds using scATAC-seq data and scRNA-seq
preprocessing, (2) GRN inference using scRNA-seq data and presumptive TF-gene bonds,
(3) perturbation simulation.

In this work, we explore the idea of inferring GRNs using a combination of cellular
pseudotime, complementary information as in SCENIC or CellOracle, and neural networks.
We take particular inspiration in TCDF [NBS19], a model based on convolutional neural
networks and attention, created to identify causal links in time series data. This
architecture has been applied to simulated financial market data and simulated functional
magnetic resonance imaging, but it has never been used in the context of GRN inference.

Chapters 2 and 3, will give an overview of the preprocessing of scRNA-seq and scATAC-
seq data, respectively. Then, Chapter 4 focuses on the fundamentals of deep learning
modeling. Next, in Chapter 5, we will introduce our model: the gene thicket and
describe how it works. Following, Chapter 6 describes the results in curated, simulated
and biological data. Finally, in Chapter 7, we will discuss the findings, conclude the work
and give ideas for future work.

2

Chapter 2

Preprocessing and analysis of single-cell
RNA sequencing data

Gene expression is the process in which the cells use the information encoded in a gene
to produce gene products (usually proteins) that regulate all the mechanisms in our body.
Two of the main components of gene expression are transcription and translation,
represented in Figure 2.1. In the transcription part, the information encoded in a gene is
copied from DNA into a single strand molecule called messenger RNA (mRNA). While,
in translation, a gene product is produced according to the instructions of the mRNA
molecule.

Figure 2.1: Transcription and translation [Bro]

In the transcription process, a group of proteins called transcription factors regulate
gene expression. Being proteins themselves, they are also product of gene expression.
That means, that the transcription of some genes regulates the transcription of other
genes, these are the so-called gene regulatory networks (GRNs) that we want to model
(see Figure 2.3). Therefore, the fundamental information for our model is the gene
expression profiles at single-cell resolution that the scRNA-seq protocol provides.

In this chapter, we will describe the RNA sequencing workflow and the preprocessing
of the data following closely the work of [LT19].

2.1 RNA-seq protocol

Multiple steps conform the RNA-seq protocol: single-cell dissociation, single-cell isolation,
library construction, and sequencing. single-cell dissociation refers to the process in

3

Chapter 2 Preprocessing and analysis of single-cell RNA sequencing data

which the biological tissue samples are digested to generate a single-cell suspension. Then,
as its name suggests, in single-cell isolation cells are isolated for an individual mRNA
profiling. Scientists usually capture each cell, either in a microfluid droplet or wells on
a plate, depending on the experimental setup. The mRNA of each cell is labeled with
a barcode that is either droplet- or well-specific. This particular step is prone to many
errors, which can end up in capturing multiple cells (doublets or multiplets), capturing
non-viable cells, or simply not capturing a cell (empty droplets/wells). Later, the After
cell isolation, we capture the cell’s mRNA, transcribe it to complementary DNA (cDNA)
and amplify it, in the step known as library construction. Later, the cDNA libraries
are annotated with cellular barcodes and captured molecules are often labeled with
a unique molecular identifier (UMI). Finally, the cDNA libraries are pooled together
(multiplexed) for sequencing to produce read data. Before the analysis of read data,
we need to perform quality control, group the data based on their assigned barcodes
(demultiplexing) and align in read-processing pipelines. In case of UMIs protocols, read
data can be demultiplexed to produce count data of captured mRNA molecules.
A comparison of detailed protocols and a more extensive description can be found in

[Zie+17], [Mac+15] and [Sve+17].

2.2 Preprocessing

The preprocessing of RNA-seq data can be summarized in the following steps:

1. Quality control. In this step, we examine the distribution of the number of codes
per barcode (count depth), the number of genes per barcode, and the fraction
of counts from mitochondrial genes per barcode. Outliers of these distributions
usually correspond to doublets, dying cells, or cells whose membranes are broken.
To minimize the false positive rate, it is recommended to analyze the distributions
together.

2. Normalization. We must normalize count data to make the counts comparable
between cells and to be sure that the differences we observe among cells are not a
consequence of technical measurements, but due to biological reasons. There exist
many normalization methods that can be applied to RNA-seq data, and indeed they
perform optimally in different datasets [Col+19]. The most popular normalization
method is counts per million normalization, also known as CPM normalization.
However, there are many others like a CPM normalization extension proposed by
[WWK18] and Scran’s pooling-based size factor estimation method [LB+]. Some
authors also normalize gene counts to have a better gene-to-gene comparison. This
normalization is a scaling of gene counts to have a mean of zero and a standard
deviation of one (z scores). Nevertheless, others prefer to omit scaling because the
importance of a gene is reflected in the magnitude of its expression.

4

2.2 Preprocessing

Figure 2.2: RNA-seq quality control distributions with filtering decisions for a mouse epithelium
dataset from [Hab+17]. Image source: [LT19]

3. Log-transformation. Now, we will transform the count data matrix using the
transformation log(x+1). There are three main reasons for applying this transfor-
mation:

• the standard way to measure changes in gene expression is through log fold
changes, which are represented by the log-transformed expression values,

• the mean-variance relationship of single-cell data [Bre+13] is mitigated,

• and the skewness of the data is reduced, approximating now more to a normal
distribution.

4. Correction for biological and technical effects. Sometimes, it is useful to
remove cell cycle and count depth effects from the data, for example, when inferring
developmental trajectories [Bue+15]. We can remove these effects by performing a
simple linear regression as in Scanpy [WAT18] or Seurat [But+18], or we can also
apply more complex models as scLVM [Bue+15] or f-scLVM [Bue+17].

5. Correction for batch effects. When cells come from different experiments, we
may observe differences due to the variety of conditions they were handled. This is
known as batch effect. There are multiple methods that we can apply to correct

5

Chapter 2 Preprocessing and analysis of single-cell RNA sequencing data

for batch effects. For example, ComBat [JLR07], or data integration methods like
scGen [LWT18] and Canonical Correlation Analysis [But+18].

6. Feature selection. The idea of this step is to maintain only the highly variable
genes (HVGs) [Bre+13], which are the most informative genes in the data. On
practice, between 1,000 and 5,000 genes are selected.

7. Dimensionality reduction and visualization. The cells can be described by
fewer dimensions than the number of their measured genes. We aim to find these
dimensions to get a better visualization of the data in two or three dimensions. There
are many algorithms for dimensional reduction, for example, principal component
analysis (PCA), diffusion maps [Coi+05], uniform approximation, and projection
method (UMAP) [MHM18] and t-distributed stochastic neighbourhood embedding
(t-SNE) [VDM09].

8. Imputation. Single-cell data contain many sources of noise, being drop-outs one
of the main ones. Imputation seeks to reduce the level of noise by filling out the
zeros, caused by drop outs, with an appropriate value. The method that we use
is based on the k-nearest neighbor (KNN) graph G from the previously filtered
and normalized count matrix X. Each node of G represents a cell, and each edge
between two nodes v, w, indicates that they are in each others’ k-neighborhood.
There are more sofisticated methods based in k-nearest neighbors graphs, that also
aim to reduce batch effects, such as batch balanced KNN (BBKNN) [Pol+20] or
Harmony [Kor+19].

2.3 Advanced Analysis
In this section, we will list some of the different methods available, designed to extract
crucial biological insights and describe the underlying biological system.

Clustering
There exist different types of cells that are involved in different biological processes. For
example, in the pancreas, the alpha cells produce the hormone glucagon, which increases
the levels of glucose in the blood. But there are also beta cells, that are crucial for the
production of insulin, which decreases the levels of glucose in the blood. These two types
of cells are present in the pancreas, and have different biological functions. By clustering,
we aim to identify the different types of cells in a tissue, grouping them by the similarity
of their gene expression profiles. There are many algorithms that we can use for this
step, for example, k-means, hierarchical clustering, and Louvain community detection
[Blo+08]. Nowadays, Louvain is the default method used by single-cell analysis platforms
Scanpy [WAT18] and Seurat [Hao+21].

6

2.3 Advanced Analysis

Cluster annotation
After we identified clusters of cells, we would like to validate and annotate them with a
meaningful biological label. Since sometimes cells that belong to the same cell type are
in different clusters due to their cell states, the clusters are referred to as cell identities
instead of cell types. Clusters are usually annotated according to the marker genes,
i.e. the gene signatures of each cluster. To improve the annotation process, reference
databases like the mouse brain atlas [Zei+18] or human cell atlas [Reg+17] are becoming
more available.

Trajectory inference
Gene expression is a dynamic process that occurs in the cell. RNA-seq data capture
snapshots that can reveal the development of a cell, for instance, the transitioning
between cell identities, cell differentiation or simply changes in the biological function.
Trajectory inference methods aim to reconstruct this continuous process by finding paths
in the cellular space that minimize the transcriptional changes between neighboring cells.
Here, the time is a latent variable described by a proxy variable called pseudotime that
ranges from zero to one. There are many available methods such as Monocle [Tra+14],
Wanderlust [Ben+14] or Slingshot [Str+18].

Gene regulatory networks
Complex regulatory interactions between genes and molecules determine gene expression,
as seen in Figure 2.3. Gene regulatory networks (GRNs) aim to describe these underlying
relationships. Many algorithms infer GRNs based on gene co-expression measurements and
rely on different methods such as regression, correlation, mutual information, differential
equations, three ensemble methods, or even neural networks. Some of them are related
to trajectory inference, and others include additional information such as ATAC-seq data,
covered in Chapter 3. A couple of existing methods is listed on Chapter 1.

Figure 2.3: Regulatory interactions and GRNs [San+19]

7

Chapter 3

Preprocessing and analysis of single-cell
ATAC sequencing data

The compaction of chromatin (how DNA is stored) determines the gene regulation.
The DNA wraps itself around histone proteins, that later form nucleosomes, make a
high order structure and loop themselves into the chromosome shape. This packaging
is not just structural to reduce the size of the DNA, it is also functional because it
determines the accessible DNA regions for RNA polymerase II to start transcription, i.e.,
the open chromatin regions are the regions that contain the genes that will be transcribed.

Several technologies can be used to identify open chromatin, including DNase-seq,
FAIRE-seq, and ATAC-seq. Nowadays, ATAC-seq is the most popular method because it
requires less cells, less time and money than the others. In this chapter, we will describe
how ATAC-seq works, how to analyze it and the existing tools to perform this analysis.

3.1 ATAC-seq protocol

The ATAC-seq protocol consists of two steps: Tn5 insertion and PCR amplification.

1. Tn5 insertion: ATAC-seq uses a genetically engineered hyperactive Tn5 trans-
posase to simultaneously fragment and tag the accessible regions of the genome
with sequencing adapters.

2. PCR amplification: The tagged DNA fragments are purified, PCR-amplified
and sequenced using high throughput sequencing [Pic+14].

ATAC-seq is a short name of assay for Transposase-Accessible Chromatin using se-
quencing. With ATAC-seq we can get accurate and sensitive measurements of chromatin
accessibility in less than one day and it can be performed even using around 500 cells. In
contrast, DNase-seq and FAIRE-seq published protocols have considerable more steps,
require more than two days of preparation and at least one million cells (FAIRE-seq) or
50 million cells (DNase-seq). A better comparison can be seen in Figure 3.2.

9

Chapter 3 Preprocessing and analysis of single-cell ATAC sequencing data

Figure 3.1: Tn5 (green) with sequencing adapters (red and blue) binds to the open chromatin
region and cuts the DNA into fragments [Bue+13].

The number of ATAC-seq publications and data has been increasing exponentially since
first described in 2013. It shows great potential, specially when trying to disentangle
the regulatory interactions that occur in a cell. Recently, different tools and methods
have been created for ATAC-seq data analysis. We will quickly describe them in the
following sections, following closely the information from the hitchhiker’s guide to ATAC-
seq data analysis [Yan+20], Harvard ATAC-seq guidelines [Gasa], the assessment of
computational methods for the analysis of single-cell ATAC-seq data [Che+19] and
Signac [Stu+20].

3.2 Pre-analysis
The pre-analysis of ATAC-seq data can be summarized into the following steps:

1. pre-alignment quality control. This step refers to all base quality scores, GC
content, sequence length distribution, sequence duplication levels, k-mer overrep-
resentation and contamination of primers and adapters in the sequencing data.
FastQC [And10] is a popular tool for this step, because it is efficient. It can process
a file of around 20 million reads in approximately 5 minutes, using less than 250MB
of memory.

2. adapter removal. We should remove adapters, in case that the reads appear to be
contaminated with them, because this could negatively impact the aligning of the
sequences to the reference genome. We can suspect that the reads are contaminated
with adapters either from the FastQC report (sections: "Overrepresented sequences"
and "Adapter content") or from the size distribution of the sequencing library.
There are many tools that can be used for adapter removal, here we will mention
two:

• Cutadapt [Mar11]. It looks for a specific given adapter sequence through all
the reads, removes the adapter and everything that follows.

10

3.2 Pre-analysis

(a) (b)

(c)

Figure 3.2: a ATAC-seq datasets and publications are increasing exponentially b approximate
input material and preparation time of open chromatin assays c comparison of open
chromatin assays at a locus GM12878 lymphoblastoid. ([Yan+20] [Bue+13])

11

Chapter 3 Preprocessing and analysis of single-cell ATAC sequencing data

• NGmerge [Gas18b]. It aligns each pair of reads, and if they align with 3’
overhangs, it clips the overhangs of both reads.

Cutadapt works only if we know the adapter that was used and requires a parameter
that specifies the minimal length of match for the adapter sequence (default 3bp).
Alternatively, NGmerge works only with paired-end sequencing. With these tools,
we can also remove low-quality bases.

3. read alignment to a reference genome. BWA-MEM [LD09] and Bowtie [LS12]
are two of the most popular aligners, because of their efficiency. According to
[Yan+20], a successful ATAC-seq experiment usually has a unique mapping rate
over 80%.

4. post-alignment processing and quality control.
• Fragment size distribution: we should observe a clear periodicity every

200bp corresponding to nucleosome-free fragments, single nucleosomes, dimers,
trimers, etc. as it is shown in Figure 3.3.

Figure 3.3: Successfull ATAC-seq length distribution from [Bue+13].

• Transcriptional start site (TSS) enrichment score: it is the ratio be-
tween the aggregated distributions of reads centered on the TSSs and reads
flanking the corresponding TSSs as shown in Figure 3.4. The ENCODE project
[Con+12] defined this score to evaluate ATAC-seq data. We should remove
cells with low TSS enrichment.

• Black list regions: the ENCODE project has created a list of regions
representing reads, which are often associated with artefactual signal. Cells
that show a high proportion of reads mapping to the black list should be
removed, since they frequently represent technical artifacts [AKB19].

• Duplicated reads: are likely coming from PCR artifacts [PMC18], so they
should be removed.

12

3.3 Core Analysis

Figure 3.4: TSS enrichment plot from [Yan+20]. Nucleosome fragments are enriched at TSS,
while mono-nucleosome fragments are enriched at flanking regions.

• Mitochondrial reads: are more accessible due to the lack of chromatin-
packaging [Bog12], for which they also must be removed.

Yan et.al [Yan+20] suggest the following pipeline for the pre-analysis of ATAC-seq data:
FASTQC [And10] → trimmomatic [BLU14] → BWA-MEM [LD09] → ATACseqQC
[Ou+18].

3.3 Core Analysis
In the core analysis, we will identify the accessible chromatin regions (peaks) to later
construct a feature matrix and be able to obtain crucial information from the data.

Figure 3.5: Tn5 transposase fragments and tags the accessible regions with sequencing adapters
to identify open chromatin regions (black) and transcription factor footprints (blue).
The nucleosome-free region (NFR) fragments are represented by peaks [Yan+20].

The core analysis we described closely follows the information described in [Che+19] and
can be summarized in the following steps:

13

Chapter 3 Preprocessing and analysis of single-cell ATAC sequencing data

1. Define regions: this is perhaps the most important part of ATAC-seq data
analysis, because it is the basis for constructing of the feature matrix. Most of
the methods define their regions based on peak calling, and only a few of them,
segment the genome into bins of the same size and count the fragments within each
bin (eg. SnapATAC [Fan+21] and Cusanovich2018 [Cus+18]).
The peaks are the most popular choice, because they represent fragments of open
chromatin regions. In Figure 3.6, we can observe a comparison of different peak
calling algorithms from [Che+19]. HMMRATAC [TL19] is a method based on
Hidden Markov Models, that learns the structure around the chromatin accessible
regions. It splits the genome into high signal (open chromatin), moderate signal
(nucleosome regions) and low signal (background). MACS2 [Zha+08], Homer
[Dut+19], epic2 [SS19] , F-seq [Boy+08] and JAMM [ILO15], compare the shape
of the read distribution in a specific region to a random background. And PICS
[Zha+11] estimates enrichment scores for each putative peak region.

Figure 3.6: Comparison of distinct peak calling algorithms from [Che+19].

The only aforementioned method that was designed specifically for ATAC data
is HMMRATAC. However, more methods have become available recently, like an
improved version of MACS2 [Gas18a]. [Gasa] recommend to use Genrich [Gasb],
a tool developed by the Harvard’s Informatics group that combines all the post-
alignment steps and peak calling.

2. Filter cells: we need to filter low-quality cells and cells that may represent technical
artifacts, such as doublets. Therefore, we must exclude:

• cells with very few or very high fragments overlapping peaks.
• cells with a low proportion of fragments overlapping peaks (number of frag-

ments overlapping peaks divided by the total number of fragments < 15-20%).

3. Filter peaks: after we filtered cells, we need to make sure to keep only the peaks
that are present in one or more of the remaining cells, i.e. non-zero peaks.

14

3.3 Core Analysis

4. Binarization: once filtering is complete, we can build a peak count matrix, where
the rows are the cells, the columns are the peaks and each entry represents the
number of fragments corresponding to the specific cell and peak. Since single-cell
data are sparse, we do not expect to have more than one read per cell per peak.
Therefore, it is convenient to binarize the count matrix for better results. Then,
each entry would tell us which regions are open or not in the respective cells.

5. Normalization: this is a crucial step when dealing with count data, so we can make
sure that the differences among cells have a biological meaning and are not observed
due to technical reasons. In this work, we will focus on a two-step normalization
procedure, that is a modified version of term frequency-inverse document frequency
(TF-IDF) by [Stu+20]. The idea is to normalize cells to account for differences in
sequencing depth and peaks to make the differences among them more pronounced.
TF-IDF is a popular algorithm in natural language processing used to identify the
importance of a word in a document. As its name suggests, it is composed of two
terms: the term frequency (TF) and the inverse document frequency (IDF). The
TF indicates the relative frequency of a word w in a document, and the inverse
document frequency represents the importance of a word based on its rareness. For
example, words like "the", "is", "that", appear frequently in most of the documents
and they may not be relevant to infer its content. At the end, we can generate
a word-document matrix, where each entry TF (w, d)× IDF (w) will indicate the
importance of word w in document d.
TF-IDF was first used in the context of chromatin data by [Cus+15]. Here, the
term frequency indicates the relative frequency of a peak in a cell and is computed
as:

TF (i, j) = total number of counts for peak i in cell j
total number of counts for cell j

and the inverse document frequency represents the importance of a peak based on
its uniqueness. It is estimated as:

IDF (i) = log(1 + total number of cells in the dataset
number of counts of peak i across all cells).

However, when computing the TF-IDF matrix, there are some non-zero entries
of the matrix, which mean is close to zero and variance is low. This could result
in a poor discrimination between cell types. To overcome this situation, [Stu+20]
introduced a modified version of TF-IDF, in which the inverse document frequency
is estimated as:

IDF (i) = total number of cells in the dataset
number of counts of peak i across all cells

and the TF-IDF entries of the final matrix are transformed as:

log(1 + (TF × IDF)× 104).

15

Chapter 3 Preprocessing and analysis of single-cell ATAC sequencing data

This TF-IDF modified version showed an improvement in preserving local neighborhoods
and cell type separation, when using singular value decomposition (SVD) as dimensional
reduction method and uniform manifold approximation and projection (UMAP) for
visualization. The combination of TF-IDF and SVD is known as latent semantic indexing
(LSI) and it is scalable when using the modified TF-IDF method [Stu+20], because
preserves sparsity, and efficient, because SVD is highly optimized to deal with sparse
matrices ([BR05], [BRL19]).

6. Dimensionality Reduction and Visualization: Often, the data have many
features (dimensions) that describe the cells. However, not all features carry the
same amount of information. If we keep them all, we could observe several issues
like expensive computations, highly correlated dimensions, the data could be hard
to visualize and the need of exponential amounts of data to characterize the density
(curse of dimensionality). The relevant features are the ones with highest variance,
which means, the ones who have the most different behavior across cells. One of
the most popular techniques is singular value decomposition (SVD).

Proposition 3.1 (Singular Value Decomposition)
Let X ∈ Rm×n be a matrix, then X can be written as: X = UΣV T , where U is
an orthogonal m ×m matrix, which columns are the eigenvectors of XXT ; V is
an orthogonal n× n matrix, which columns are the eigenvectors of XTX; and Σ
is a n× n diagonal matrix with the square roots of the eigenvalues of XTX in the
diagonal (also known as singular values), which are written in decreasing order.

We can use SVD to find the best low-rank approximation of any given matrix
X ∈ Rm×n with the Eckart-Young-Mirsky theorem 3.2 [EY36].

Theorem 3.2 (Eckart-Young-Mirsky)
Let X = UΣV T ∈ Rm×n be the SVD of matrix X. Then, ∀r ∈ N, such that
1 ≤ r ≤ k = rank(X); U , Σ and V can be partitioned as follows:

U =:
[
U1 U2

]
, Σ =:

[
Σ1 0
0 Σ2

]
, and V =:

[
V1 V2

]
,

where U1 ∈ Rm×r, Σ1 ∈ Rr×r, V1 ∈ Rn×r, and the matrix X̂∗ = U1Σ1V
T

1 is the
best rank-r approximation matrix of X, i.e.

‖X − X̂∗‖F = min
rank(X̂)≤r

‖X − X̂‖F =
√
σ2

r+1 + · · ·+ σ2
m

Usually, the first component of LSI is highly correlated with the total number of
counts of each cell, which means, that it captures technical variation (sequencing

16

3.4 Advanced Analysis

depth). Therefore, is a common practice to remove it from the analysis. We can
also use other techniques such as Uniform Manifold Approximation and Projection
(UMAP) [MHM18], t-distributed Stochastic Neighbor Embedding (t-SNE) [VDM09]
or DDRTree [Mao+16].

7. Clustering: The idea of clustering is to be able to identify the distinct type of
cells present in our data according to their open chromatin differences. There are
many algorithms that we can use for this step, for instance, k-means, hierarchical
clustering, Louvain community detection [Blo+08] or the smart local moving
algorithm [WVE13].

8. Annotation: we can perform a more targeted analysis by counting the peaks
overlapping specific regions of the genome, such as promoters, enhancers and gene
bodies. This is to get more information about the underlying dynamics of the cell,
for example, which motifs are available for the transcription factors to bind, or
which genes are in the open chromatin to be transcribed. There are many databases
that we can use, for example, JASPAR [Kha+18], Homer [Hei+10], SwissRegulon
[Pac+07], Factorbook [Wan+12], HOCOMOCO [Kul+18], GimmeMotifs [BVH18]
and others. In particular, GimmeMotifs created a non-redundant database including
the information about all the aforementioned ones.

3.4 Advanced Analysis

In this section, we will describe different analysis that we could perform to get even more
information from the ATAC data.

Co-accessibility
Peaks represent open chromatin regions, in which we can find different cis-regulatory
elements, such as promoters and enhancers, that influence the transcription of a gene.
Promoters are close to the gene body, while enhancers are usually distant. To predict the
interaction between the cis-regulatory elements, Cicero [Pli+18] estimates co-accessibility
scores and connects the regulatory elements to their putative target genes. First, Cicero
groups similar cells using K-nearest neighbors in a low-dimensional space (UMAP, tSNE,
etc.) to make the data more dense. Then, it builds a matrix of raw correlation between
peaks, which we can think of as a weighted non-directional graph, where the nodes are
the peaks, and the edges are the correlations among them. Having this in mind, Cicero
uses the Graphical Lasso algorithm [FHT08] to prune the connections between peaks,
penalizing the correlations according to distance (the farther the peaks are, the greater
the penalty is, and vice-versa). The output of Cicero are the co-accessibility scores for
all pairs of peaks within 500kb of one another. An example can be seen in Figure 3.8.
Additionally, Cicero uses the Louvain community detection algorithm [Blo+08] to find

17

Chapter 3 Preprocessing and analysis of single-cell ATAC sequencing data

clusters of co-accessible peaks and construct modules, also known as cis-co-accessibility
networks. An overview of Cicero can be seen in Figure 3.7.

Figure 3.7: Overview of Cicero by [Pli+18]. Cicero finds putative cis-regulatory interactions
through co-accessibility.

Figure 3.8: Example of Cicero co-accessibility links between MYOG promoter and surrounding
distal sites. Red links correspond to phase 1, while blue links to phase 2. The height
of connections indicates the magnitude of the Cicero co-accessibility score between
the connected peaks ([Pli+18]).

18

3.4 Advanced Analysis

Trajectories
The dynamics of chromatin openness are captured as a snapshot by ATAC-seq data.
These snapshots are part of the continuous development of a cell. The idea of building
trajectories is to reconstruct this developmental path minimizing the observed changes
among peaks between neighboring cells. The ordering of cells along these paths serves
as a proxy for developmental time and is known as pseudotime. Trajectory inference
was first done using gene expression and served as an inspiration for the open chromatin
version. The most known methods for RNA-seq trajectories ([Tra+14], [Ben+14]) are
the ones often used for ATAC-seq data.

Figure 3.9: Trajectories on CD34+ hematopoietic stem and progenitor cells using Monocle3
[Tra+14]. Erythroid cells are earlier in time than Lymphoid ([SSb]).

19

Chapter 3 Preprocessing and analysis of single-cell ATAC sequencing data

Differential Analysis
We would like to identify the most important differences with respect to chromatin
accessibility in the cells. To do so, [Stu+20] suggests using the logistic regression method
from [Ntr+19]. For this, we must select the two groups of cells we would like to compare.
Then, we will adjust a logistic regression model for the cells, using the peak counts as
features and group membership as the binary target variable. We will later perform
a likelihood ratio test to assess the goodness of fit and adjust the p-values using the
Bonferroni correction on the total number of peak counts in the data. Another idea
would be to take a look at the fold change accessibility (in peaks). Additionally, we could
find the closest gene to each peak and have a better interpretation of the results.

Figure 3.10: Differential analysis of gene Neurod6 peaks across different cell types of the mouse
brain ([SSa]).

Another interesting question to answer is how the chromatin accessibility is changing
through time. To answer this question, we can combine the pseudotime information from
a trajectory inference algorithm and differential analysis. Cicero [Pli+18] helps us to
visualize these chromatin accessibility changes (Figure 3.11) and integrates a statistic

20

3.4 Advanced Analysis

to indicate whether a peak is changing in pseudotime using a likelihood ratio test from
Monocle3 [Tra+14].

Figure 3.11: Change of promoter accessibility through time in human skeletal muscle myoblasts
(HSMM). Black line indicates the pseudotime-dependent average from a smoothed
binomial regression ([Pli+18]).

Transcription Factor Footprints
We can study the binding patterns of the transcription factors in the cells to get more
information about the regulatory dynamics in a cell. A more comprehensive approach
can be made using TOBIAS [Ben+20]. TOBIAS estimates footprint scores for each
transcription factor, and this scores can be interpreted as a measure of protein binding.
The higher the score, the higher the evidence that a protein was bound at a given position.
This helps us to compare and quantify the transcription factor binding activity across cells.

(a) (b)

Figure 3.12: a Aggregate ATAC-seq footprint of CTCF transcription factor. b CTCF footprints
observed through different assays. ([Bue+13])

21

Chapter 3 Preprocessing and analysis of single-cell ATAC sequencing data

Motif analysis

• Motif enrichment
We would like to find overrepresented motifs in the set of differentially accessible
peaks of each type of cell to identify their potential cell-type-specific regulatory
sequences. To do so, we must identify the position and frequency of motifs in each
peak region and compare them with a set of background peaks. We will mention a
few of the current approaches. [Stu+20] and [Dut+19] perform a hypergeometric
test to assess the probability of observing the motif at the given frequency by
chance, compared with the background set of peaks. In contrast, [STB20] and
[MB10] use a logistic regression approach, where the target variable is the logit
of the probability of a peak containing a given motif, and the covariates are the
values of the low-dimensional coordinates of the cells when applying PCA to recover
99% of the variance (remember, the original dimension is the number of peaks).
[TAD18] generates a motif displacement score [Azo+18] by estimating the ratio of
motif occurrence in a small bin (150bp) to a large window (1500bp) from each peak
center, and then this score is compared across different conditions with a Z-test.

• Motif activities
A motif activity is the deviation in chromatin accessibility across the set of peaks
that contain the motif, i.e., how different the accessibility is for peaks containing
the motif compared to the average peak accessibility. The number of fragments
that map to a peak is interpreted as its accessibility. Motif activities allow us to
identify differentially active motifs across cells, is like gene expression for motifs,
and give us a hint to discover potentially transcription factor binding sites. The
most popular tool to compute motif activities is ChromVAR [Sch+17], specially
designed for scATAC-seq data.

Gene Activities
Gene activities are a measure of chromatin accessibility associated with each gene, an
intuitive way to link peaks with genes. There is no specific gene activity score, so there are
different ways to estimate it. For example, Signac [Stu+20] sums fragments overlapping
the respective gene bodies and promoters, Cicero [Pli+18] sums fragments proximal to a
gene transcription starting site (TSS) and its related cis-regulatory elements, and Gene
Scoring [Lar+19] computes a distance-weighted sum of fragments overlapping the 50kb
upstream and 50kb downstream regions of the gene TSS.
In Figure 3.13, we can observe the activity of three genes in the mouse brain using Signac
[Stu+20].

22

3.4 Advanced Analysis

Figure 3.13: Gene activities estimated using scATAC-seq data of cells from the mouse brain
([Stu+20]).

Data Integration
scATAC-seq data give us information about the accessible chromatin regions in a cell,
however, these data can be complemented to have a better understanding of the complex
regulatory dynamics that happen within it. In this last part, we will talk about scATAC-
seq and scRNA-seq integration. The methods reviewed so far, first compute the gene
activity scores and build a gene activity matrix, to later integrate it along with the
gene expression values. scMVAE [ZC20] fits a multimodal variational autoencoder to
learn jointly the features of multilayer profiles, scJoint [Lin+21] transfer labels from
scRNA-seq to scATAC-seq gene matrix using a neural network. But, the most popular
method is [Stu+19] (used in Signac). This method reduces the dimension of both
datasets with Canonical Correlation Analysis (CCA) [But+18], applies L2-normalization
to the canonical correlation vectors, identifies mutual nearest neighbors in the shared
low-dimensional representation (also known as transfer anchors), estimates scores based
on the consistency of anchors, and computes "correction" vectors for each query cell to
be jointly integrated.
In this chapter, we mentioned some of the analysis and tools for ATAC-seq data.

However, all these are exponentially increasing given to its extremely high potential.

23

Chapter 3 Preprocessing and analysis of single-cell ATAC sequencing data

Figure 3.14: scRNA-seq and scATAC-seq joint embedding of cells from the mouse brain using
Signac [Stu+20].

24

Chapter 4

Modeling with neural networks

There are several algorithms that can be used for GRN inference. One approach is to
address the problem using neural networks. Neural networks are universal approximators
used in different fields. A neural network can belong to one of the following types of
algorithms, depending on its learning process:

• Supervised learning. In supervised learning, the algorithm compares its predic-
tion with the correct answer to improve itself on each iteration. That means, that
for this type of models, we must provide the right answer (ground truth). These
models are used, for example, in classification or regression tasks.

• Unsupervised learning. Finding patterns and structure in the data is the
goal of unsupervised learning. The usual problems tackled using this approach
are clustering, anomaly detection, association, autoencoder noise removal, and
dimensionality reduction. The lack of ground truth makes these methods hard to
assess, however, there are useful in practice.

• Semi-supervised learning. This refers to when we have labeled and unlabeled
data. It is useful when both, labeling and extracting relevant features from the
data are difficult. An example would be generative adversarial networks (GANs).

• Reinforcement learning. Here, an agent must learn how to interact with a
dynamic environment to accomplish an objective. No data are given, the agent
learns from it choices and tries to maximize its reward.

In this work, we will use a convolutional neural network on time series data to infer
GRNs. The problem is set as a regression task, where the time series from putative
transcription factors are used to predict the time series of their target genes. Therefore,
we are dealing with a supervised learning task.

Through this chapter, we will explain the fundamental parts of neural networks and in
convolutional neural networks (CNNs), which were originally designed to tackle problems
in the field of computer vision. A deeper explanation of the foundations of neural networks
can be found in [GBC16] and [Bis14].

25

Chapter 4 Modeling with neural networks

4.1 Fundamentals
To understand how a neural network works, it is useful to have the following function
f : RD → RL in mind:

f(x,w) := h

w0 +
M−1∑
j=1

wjφj(x)

 = h(wT φ(x)), (4.1)

where φ : RD+1 → RM is an element-wise function, with φ0 := 1. φ and h : R → R,
are called basis function and activation function, respectively. The parameters, wj , with
j ∈ {1, ...,M − 1} are known as weights, and w0 is known as bias.

Definition 4.1 (Neural network)
A neural network is a composition of functions of type 4.1, which basis functions are also
functions of type 4.1 [Bis14]. We can write the equation explicitly as:

F (x,W) := hK(wK
ThK−1(wK−1

T · · ·h0(w0
T x))), (4.2)

where the subscript k in wk and hk, with k ∈ {0, ...,K}, indicates the number of layers.

Figure 4.1: Graphical representation of a neural network.

Neural networks are often represented graphically as shown in Figure 4.1. They usually
have non-linear activation functions and several layers. The last activation function
hK is chosen according to the function we want to approximate, while the rest of the

26

4.1 Fundamentals

activation functions are frequently taken from popular non-linear activation functions in
the literature. In this work, we use the parametric rectified linear unit (PReLU) [He+15]
defined as follows:
Definition 4.2 (PReLU)
The parametric rectified linear unit (PReLU) activation function is defined as:

PReLU(yi) = max(0, yi) + aimin(0, yi) =
{
yi, if yi ≥ 0
aiyi, if yi ≤ 0

(4.3)

where ai is a parameter that the neural network learns during training, often initialized
as 0.25.

A graphic representation of PReLU is shown in Figure 4.2.

Figure 4.2: PReLU activation function.

4.1.1 Parameter optimization
The process in which a neural network finds the optimal parameters W is called learning.
In this work, we are dealing with a supervised learning task, that means that the neural
network will approximate W by comparing its output Ŷ against the true values Y. To
do this comparison, we use a loss function L, which intuitively provides a measure of
how far the given output is from the truth. L = 0 would mean that the output of our
model is the ground truth, while large values of L would mean the opposite. Therefore,
the objective is to find the parameters W that minimize the loss function L.

Every time the neural network is fed with an input value x, it adjusts the values of W
using the following update rule:

Wnew = Wold − α∇WL(Wold) (4.4)

27

Chapter 4 Modeling with neural networks

where the learning rate α ∈ R+ is a hyperparameter that controls how much we move
in the direction of the gradient −∇WL(Wold), that indicates the direction in which
the loss function decreases the most in every step. The gradient ∇WL(Wold) is found
numerically during training, through an algorithm called backpropagation. More detailed
explanations can be found in [Bis14].
The update rule 4.4 is applied iterative to the inputs X to optimize the parameters

W. This method is known as gradient descent (GD) [Bis14]. However, the choice of the
learning rate α in GD is challenging, therefore, different algorithms have been proposed to
overcome this limitation. In this work, we use the Adaptative Moment Estimation (Adam)
optimizer [KB14], a method based on GD that adapts the learning rate dynamically
during training, depending on the mean and variance of the loss function.

4.1.2 Parameter initialization
When we have several layers with activation functions, we can observe the problem
of gradient vanishing or gradient exploding. These problems are encountered when we
compute the gradient to optimize the weights as in equation 4.4 using backpropagation.
During backpropagation the gradients are computed using the chain rule, which means
that we compute the product of several numbers. If these numbers are small, the gradients
can be vanishing small preventing the weights to be updated (vanishing gradients); and if
these numbers are large, the gradients can take on larger values resulting in huge updates
to the weights, instability and could prevent the model to learn (exploding gradients).
To prevent the problems of gradient vanishing and/or gradient exploding, we can

initialize the weights so they have zero mean and a constant variance through the layers.
In this work, we use the Xavier initialization [GB10] mechanism, this means that for
every layer k:

wk ∼ N
(
µ = 0, σ2 = 1

nk−1

)
(4.5)

where nk−1 is the number of neurons in layer k − 1, and the bias should be initialized as
zero.

4.1.3 Weight Normalization
To accelerate the training of Deep Neural Networks, Salimans et al. introduced weight
normalization [SK16]. The idea is to reparametrize each weight vector w as follows:

w = g

||v||v (4.6)

where v is a k-dimensional vector, g is a scalar, and ||v|| is the Euclidean norm of v.
In such setting, the norms of all the weights are constant ||w|| = g. The authors state
that weight normalization also improves the conditioning of the gradient and leads to
improved convergence of the optimization procedure.

28

4.1 Fundamentals

4.1.4 Residual Blocks

Just like parameter initialization, residual blocks proposed in [He+16] are another tech-
nique that can be performed to avoid gradient vanishing and gradient exploding. Residual
blocks make the training of a neural network more stable by adding an identity connection.
Then, if a layer is no longer beneficial, the neural network will skip it. Figure 4.3 shows
a diagram of a residual block. For us, is important to have the idea of the residual block,
however, we would use a modified version of it. Therefore, details of Batch normalization
are out of our scope, but can be found in [IS15].

Figure 4.3: Structure of a residual block. [Bec21]

4.1.5 Early stopping

Neural networks are prompt to overfitting while updating the weights using an iterative
method (see Equation 4.4). The model improves its fit to the training data with each
iteration, and improves its performance on outside data up to a certain point. Past
that point, the model loses the ability to generalize. Early stopping is a regularization
method we can use as a guidance to know how many iterations should be performed in
the training, before overfitting. Figure 4.4 provides a graphic explanation. More theory
details can be found in [Bis14].

Figure 4.4: Training and validation loss through epochs. Early stopping (dotted line), indicates
the point where we should stop the training before overfitting the data. [Vog18]

29

Chapter 4 Modeling with neural networks

4.2 Convolutional neural networks
A convolutional neural network (CNN) is a type of neural network, typically used to
analyze images. CNNs take advantage of the spatial information that images provide, by
using convolutional layers or pooling layers to learn image features, such as vertical lines,
horizontal lines, or more complicated patterns.

4.2.1 Convolutional layer

A convolutional layer is a special type of layer used by CNNs. In contrast of a linear
layer defined in Section 4.1, a convolutional layer makes use of filters or kernels that slide
along the input and extract a feature map [Zha+88]. These kernels have a shared-weight
architecture, meaning that their weights are used by multiple elements of the input. The
process of how a convolutional layer works is shown in Figure 4.5.

Figure 4.5: Convolutional layer. The input image is represented with its three channels: red,
green and blue; the convolution kernel of size 2× 2 is shown in orange; the feature
map is represented in gray. [Bec21]

The feature map is the output of sliding the kernel through an image, and each of its
entrances can be computed as follows:

zi = wT xi + b (4.7)

where w are the kernel weights, xi is the i-th chunk of the image, and b represents
the bias. The number of pixels that the kernel shifts in each step is called the stride.
Both, the kernel size and the stride are hyperparameters. In Figure 4.5 the kernel size
is 2× 2× 3 and the stride is 1. We can also observe that the size of the feature map is
smaller than the input image. If we want to preserve the size between the input and
the feature map (same convolution), we need to add zeros in the edge of the input (zero
padding) as shown in Figure 4.6.

It is important to note that each kernel maps a multi-channel input into a single-channel
feature map. That means that each channel in the feature map corresponds to one kernel.

30

4.2 Convolutional neural networks

Figure 4.6: Padding. A channel of the input image with zero padding is shown in blue. The
feature map, represented in gray, has the same size of the original image as indicated
by the green outline. [Bec21]

Also, it is worth mentioning that CNNs usually have a non-linear activation function
after the convolution layers that helps them learn non-linear relations.

4.2.2 Temporal convolutional neural networks

Temporal convolutional neural networks (TCNNs) are CNNs for time series prediction.
Although, most of CNN applications are in the field of computer vision, they have also
been used to deal with time series data. [BKK18a] proposed TCNNs and showed that
they overcome several limitations of recurrent neural networks (RNNs), like gradient
exploding or vanishing, and lack of memory retention. Additionally, CNNs allow for
parallel computation of outputs. TCNN has a one-dimensional vector as input and as
output and uses a modified convolution layer called causal convolution, that ensures that
every element of the output sequence depends only on observed elements of the input
sequence (past and present). Figure 4.7 shows the difference between causal and standard
convolutions.

(a) (b)

Figure 4.7: Comparison between a standard convolution (a) and a causal convolution (b) [Kla19]

31

Chapter 4 Modeling with neural networks

4.2.3 Dilated convolutions

In convolutional layers, the region of the input that produces an output feature (on any
layer) is known as receptive field. The idea of a dilated convolution [YK15] is to capture
a large context of the input without increasing the number of parameters by expanding
the kernel with gaps. This means, that the network will increase the receptive field of
its features, without increasing the number of parameters as shown in Figure 4.8. We
can also combine the concept of dilations with causal convolutions into a causal dilated
convolution, as the one illustrated in Figure 4.9.

Figure 4.8: Dilated convolution. The receptive field expands without loss of resolution (without
parameter increasing).[YK15]

Figure 4.9: Causal dilated convolution. The combination of a causal convolution and dilations
[Kla19].

4.2.4 Depthwise separable convolutions

A convolution layer learns spatial correlations within every channel and cross-channel
correlations simultaneously. The idea of a depthwise separable convolution (introduced
by [Cho16]) is to learn both types of correlations independently. First, the spatial
information is captured by a regular convolution in each channel individually, and then

32

4.2 Convolutional neural networks

the cross-channel correlations are captured by a pointwise convolution, as it can be seen
in Figure 4.10.

(a) (b)

Figure 4.10: Comparison between a standard convolution (a) and a depthwise separable convo-
lution (b) [Ben].

4.2.5 Attention mechanisms
The idea behind an attention mechanism is to enable the neural network to focus on
the most relevant parts of the input to compute the output. Attention provides scores
that serve as an interpretability method. By interpreting attention, we can figure out
exactly which parts of the input are relevant for the prediction. It has been proven to be
effective for different tasks, for example in [Vas+17], or [Yin+16].

In the literature, we can distinguish between soft attention, where the final scores are
in the interval [0, 1]; and hard attention, where these are either 0 or 1. Hard attention
may be easier to interpret, but has the strong limitation of being non-differentiable, and
thus, not optimizable during backpropagation [She+18]. For this reason, many authors
prefer to use soft attention. To estimate soft attention, the softmax function σ is applied
to the trainable attention vector.

33

Chapter 5

The gene thicket: a new method to infer
gene regulatory networks

The goal of this thesis is to explore the idea of having a new GRN inference method based
on neural networks, that takes into account time (or pseudotime ordering), RNA-seq data
and ATAC-seq data. From this idea, the gene thicket was created. In this chapter, we
will describe step by step how our model works. We will start with scATAC-seq and
scRNA-seq data preprocessing, then we will detail gene thicket’s architecture, and finally
we will explain the metrics used to evaluate the performance of the model. An overview
of the entire workflow can be seen in Figure 5.1.

5.1 ATAC-seq data preprocessing

The causality inference from gene expression profiles can be problematic due to the level
of noise in the data, and also spurious links can be inferred based only on correlations. We
can overcome these limitations by adding different data modalities, such as scATAC-seq
data. Therefore, as part of the gene thicket’s pipeline, we integrated the CellOracle’s
ATAC pipeline [KHM20]. The idea is to analyse scATAC-seq data to have a list of
transcription factors and putative target genes, that serve as a prior information. We
can think of it as an initial GRN structure that we will prune, later on, using scRNA-seq
data and the gene thicket.
For most of the recent scATAC-seq databases, the pre-analysis mentioned in Section

3.2 and the definition of regions from Section 3.3 are already performed. Since there is
no need of the doing the first steps, we will continue as follows:

1. filter cells, filter peaks, binarization, normalization and dimensional reduction steps
described in Section 3.3.

2. run Cicero [Pli+18] to estimate co-accessibility scores between peaks, as it is
described in Section 3.4. The output will be a list of peak pairs within 500kb apart
and their coaccessibility scores.

35

Chapter 5 The gene thicket: a new method to infer gene regulatory networks

Figure 5.1: The gene thicket’s workflow overview. scATAC-seq data is used as a prior to obtain
directed regulatory gene connections. Then, pseudotime ordered expression profiles
of transcription factors are used to predict the pseudotime ordered expression profile
of its putative target genes. The output is a refined network with signed and
weighted connections.

3. annotate peaks from Cicero’s output using Bedtools [QH10] intersection and filter
all regions that have a coaccessibility score < 0.8 with a gene’s transcription starting
site (TSS), to avoid false positives.

4. scan the remaining peaks to find motifs using GimmeMotifs [BVH18]. For each
peak, we will select all the corresponding motifs and create a list of their associated
transcription factors (also from GimmeMotifs).

5. create a list of unique genes with corresponding transcription factors from the
previous output.

This final list of target genes and their corresponding putative transcription factors will
be the input of the gene thicket.

36

5.2 RNA-seq data preprocessing

In case that no scATAC-seq data is available, we can obtain the aforementioned list
from the ranking cisTarget [Imr+15] databases used in SCENIC [Aib+17]. Empirically,
we selected the first 1500 target genes associated with each transcription factor, and
then filtered the database to keep only the genes of our final expression data from the
RNA-seq data preprocessing step described in the following Section 5.2.

5.2 RNA-seq data preprocessing

The inferred causal relationships depend on the gene expression patterns through time.
For that reason, the preprocessing of gene expression profiles from scRNA-seq data is
crucial for our model. We will follow the preprocessing steps described in Section 2.2
using scVelo [Ber+20]. First, we will select genes filtering them by a minimum number
of counts and high variability (dispersion), then each cell will be normalized by its total
size, next the count data matrix will be log transformed, later we will compute principal
component analysis (PCA) as dimensional reduction method, and finally, we will impute
the data using the k-nearest neighbor (KNN) graph.

5.3 The gene thicket

The motivation to build the gene thicket is to have a method that considers non-linear
relationships between target genes and transcription factors, such as GENIE3 [IWG+10]
or GRNBoost2 [Moe+19], but that also considers time series data. This is because the
change in expression of transcription factors has an impact in the change of expression
of target genes, which is observed when the expression profiles are sorted through time.
However, algorithms that do not require pseudotime-ordered cells have shown a better
performance according to [Pra+20]. Another advantage of having a time series approach is
that we can make forecasts about the expression values of target genes using the previous
expression values of transcription factors. Then, we could compute displacements and
simulate trajectories, in a similar way that CellOracle [KHM20] does.
The idea of using deep learning comes from the fact that neural networks are uni-

versal non-linear approximators. We selected temporal convolutional neural networks
with attention, because they are scalable and can be interpreted through an attention
mechanism. In this work, we created a model to infer GRNs based in this idea, including
epigenetic information (ATAC-seq data) as prior.

5.3.1 Architecture

The presented architecture was inspired by the Temporal Causal Discovery Framework
(TCDF) [NBS19], used to infer are causal associations in market stocks, and by the
Temporal Convolutional Network (TCN) [BKK18b], used to model univariate time series.

37

Chapter 5 The gene thicket: a new method to infer gene regulatory networks

Figure 5.2: Overview of a network that predicts a target gene expression through time. Each
transcription factor time series is multiplied by an attention constant σai, and then
used as an input for a residual block denoted by

⊕
. The residual block consists

of convolutional layers with dilations, which have PReLU activation functions and
weight normalizations in between. At the end a pointwise convolution is used to
combine separable outputs into a single future prediction for the target gene.

The gene thicket consists ofN identical and independent neural networks. Each network
is built to predict the time step t from a target gene time series, using present (time step t)
and past (some time steps < t) values of its putative transcription factor time series. We
obtained this putative transcription factor list for every gene, from the scATAC-seq data
preprocessing 5.1, as it is shown in Figure 5.2. For this, we use one-dimensional temporal
separable convolutions with causal padding (4.2.2, 4.2.4). The separable convolutions
are brought together by a pointwise convolution, so at the end we can have a single
prediction. In this way, we can treat each of the input time series individually, which
helps the model’s interpretability. We used PReLU (4.2) activation functions, weight
normalization (4.1.3) and initialized the weights using Xavier initialization (4.1.2).

To increase the network’s receptive field, we included dilations (4.2.3) with an exponen-
tially increasing dilation factor. In this way, the receptive field augments exponentially,
while the parameters grow linearly, which is particularly useful to deal with delays
between cause and effect. The gene thicket also makes use of residual connections, in the
form of residual blocks .
To reduce the computation time and make the gene thicket more scalable, we added

an early stopping mechanism 4.1.5. We train the network with the first 80% of the time
steps and use the remaining 20% as a validation set. If the performance of the model in
the validation set does not improve for a determined number of iterations (in our case,
30), then it stops training.

38

5.3 The gene thicket

5.3.2 Interpretability

An attention mechanism (4.2.5) was implemented to find out which transcription factor
time series are the most relevant for the prediction of their presumptive target gene. For
each network Nj , the attention mechanism is a trainable vector aj of size 1×M , that
is multiplied element-wise with the M time series from the input. That means, that
the attention score ai,j is multiplied with the input time series Xi in the network Nj .
Then, we can interpret the attention score ai,j as the importance of time series Xi when
predicting target time series Xj .

At the beginning of the training, the attention scores have an initial value of 1. During
backpropagation, the scores are updated, and take values in R. With these scores we
compute soft attention, as mentioned in 4.2.5. To select relevant attention scores, we
apply a HardSoftmax function that will set as zero all the scores below a certain threshold
τj :

HardSoftmax(a) =
{
σ(a) if a ≥ τj

0 if a < τj

(5.1)

Let hi,j be the value that we obtain when applying the HardSoftmax function to the
attention score ai,j . Then, if hi,j > 0, we will consider the time series Xi as a potential
cause of time series Xj .
To determine the threshold value τj , we order the attention scores in aj , from high

to low, and search for the largest gap between two adjacent of them. τj will be equal
to the attention score on the left side of the gap. However, we make a few additional
considerations. Let G be set of gaps {g0, g1, ..., gN−1}, then:

1. τj ≥ 1. Since the attention scores are initialized as 1 and we are using a softmax
function, an increasing of this initial value will mean that the network is focusing
on the corresponding time series.

2. τj should not be the highest attention score. This is to ensure that potential causes
of target Xj are not being truncated, just because their attention scores are weaker
than the top score. Consequently, we will always consider at least two time series
as potential causes.

Figure 5.3 illustrates the selection of τj .

5.3.3 Sign assignment: Activation or Repression

One essential characteristic of a GRN is that their edges have a sign representing an
activation or repression relationship between two genes. Since the attention scores are
inferred through a pipeline, where they are the input of a sigmoid function, their sign
does not reflect the type of the presumptive relationship between the genes. Therefore,

39

Chapter 5 The gene thicket: a new method to infer gene regulatory networks

Figure 5.3: The threshold value τj is the attention score on the left side of the largest gap gk,
with k 6= 0.

as a first simple approach, we decided to estimate the signs using Pearson correlation
coefficient (PCC) as it is done by SCENIC [Aib+17].

The Pearson correlation coefficient is a normalised measure of covariance between two
variables and it is defined as:

ρX,Y = cov(X,Y)
σXσY

(5.2)

where X and Y are two random variables, cov is the covariance, σX is the standard
deviation of X, and σY is the standard deviation of Y .

One of the biggest pitfalls of PCC is the fact that only captures linear correlation. We
are aware of this limitation and intend to develop a new method to estimate signs in the
future.

5.3.4 Causal validation
According to [Eic12], a causal relationship should have the following characteristics:

• temporal precedence: the cause precedes the effect.

• physical influence: changes in the cause impact the effect.

Now that we have a list of potential causes for each target, we would like to validate that
these two causality requirements are fulfilled. Since we are using a temporal convolutional
neural network, the temporal precedence is satisfied. However, we still need to check for
physical influence.
To make sure that physical influence between a potential cause and the effect exist,

we will use Permutation Importance (PI) [Bre01]. The idea of PI is to permute the
values of the time series corresponding to the potential cause, and measure if the loss
function of the network increased significantly. If this is the case, that means that the
potential cause is likely a true cause of the predicted variable. This comes from the fact
that by permuting the values of the potential cause, we are breaking the chronological
relationship between cause and effect. In our implementation, we will take this idea to
validate the cause Xi for target Xj by doing the following:

40

5.3 The gene thicket

1. First, train network Nj and measure the loss at the first and last iterations. We
will call them Linit and Llast, respectively.

2. Then, permute the values of Xi in the input dataset.

3. Later, evaluate the trained network Nj using the permuted dataset and measure
the loss Li.

Let ∆G := Llast −Linit and ∆i := Llast −Li be the loss improvements using the original
inputs and the input with the permuted variable Xi, respectively. Then, for a given value
s ∈ (0, 1], if ∆i ≤ (∆G × s), Xi is considered a true cause of Xj . Because that would
mean that the improvement on the loss using permuted values of Xj is relatively small
compared to the improvement we obtained by using the original chronologically ordered
input. The parameter s is a hyperparameter that we set as 0.8, as in [NBS19].

41

Chapter 6

Results

In this chapter, we will evaluate the performance of our model (the gene thicket) and
compare it with the performance of different existing GRN approaches. Although it may
seem that this is a straightforward task, to evaluate the quality of any reconstructed
gene regulatory network is extremely challenging, because a ground truth does not exist.
Moreover, there are diverse factors that have an impact on experimental data and could
affect the interactions in a system. These factors can be primary cell types, environmental
conditions, technology platforms and cell lines [CM18]. To overcome these limitations,
in the first two sections, we will evaluate the model’s performance using synthetic and
curated data from [Pra+20], respectively. In the last section, we will investigate the
model’s behavior in real biological data that describe the Pancreatic endocrinogenesis
[BP+19].
We compared our model against the tree-based GRN inference algorithms Genie3

[IWG+10] and GRNBoost2 [Moe+19]; an existing algorithm to infer GRNs from time
series data called SINCERITIES [PG+18] and the TCDF algorithm [NBS19]. The metrics
we use to compare our method are the Area Under the Precision Recall Curve (AUPRC)
and the Area Under the Receiver Operating Characteristic Curve (AUROC), described on
Appendix A. To compute AUPRC and AUROC, we think of the GRN inference problem
as a binary classification task: if geneA regulates geneB, then (geneA, geneB) should be
of class 1 (positive class); and if such relationship does not exist, (geneA, geneB) should
be of class 0 (negative class).

6.1 Curated Datasets
We evaluated the model in the four existing types of curated datasets: Mammalian Cortical
Area Development (mCAD) [GG10], Ventral Spinal Cord Development (VSC)[Lov+14],
Hematopoietic Stem Cell Differentiation (HSC) [Kru+11], and Gonadal Sex Determination
(GSD) [Río+15]. More information about the datasets and a summary of the ground
truth networks for each one of the models can be found on Appendix B.1.

Figure 6.1 shows the performance of our model against other GRN inference algorithms
on the curated data. For mCAD, the gene thicket has the best performance, while for
the rest of the curated dataset types, its performance can be ranked in the bottom two.

43

Chapter 6 Results

Figure 6.1: AUPRC and AUROC of GRN Inference methods evaluated on the curated datasets.
The gene thicket has the best performance on the mCAD dataset, while for the rest,
its performance lies on the bottom two.

Figure 6.2: The gene thicket struggles to predict the expression of Cebpa, Gfi1, Gata1 and
Gata2 in version eight from HSC dataset with 2000 cells and drop out rate of 70.

44

6.1 Curated Datasets

We investigated more about this fact, and discovered that this is due to the different
trajectories the cells can follow. Depending on the faith a cell has, the expression of
its genes can be either low or high at the same moment of time. This ambiguity is
not considered by the model so far and impacts its performance. In Figure 6.2, we can
observe an example of how the gene thicket struggles to make a good gene expression
prediction, because the loss function of the gene thicket is the mean square error (MSE),
which is not suitable for ambiguities.

We can also note that the performance of the models has the tendency to get worse
when the number of genes grows. In general, the AUPRC values of the models have the
following order, when sorting them from the largest to lowest: mCAD (5 genes), VSC
(8 genes), HSC (11 genes) and GSD (19 genes). This comes from the fact that when
the number of genes increases, the complexity of the relationships grows and also the
possibility of the models to detect indirect regulatory links.

The curated datasets also allow us to investigate the behavior of the different GRN
inference algorithms when having distinct drop out rates, as it can be seen in Figure
6.3. For each type of data, there exist versions with drop out rates of 0, 50 and 70.
Unsurprisingly, the performances of the algorithms tend to decrease as the number of
drop outs increases.

Figure 6.3: Effect of dropouts on the performance of GRN inference methods.

45

Chapter 6 Results

6.2 Synthetic Datasets
We evaluated the performance of the gene thicket on the six existing types of synthetic
datasets: bifurcating (dyn-BF), bifurcating converging (dyn-BFC), cycle (dyn-CY), linear
(dyn-LI), linear long (dyn-LL), and trifurcating (dyn-TF). The datasets description and
a summary of the ground truth networks for each one of the types can be found on
Appendix B.2.

Figure 6.4: AUPRC and AUROC of GRN Inference methods evaluted on the synthetic datasets.

Figure 6.4 shows the AUPRC and AUROC scores of our model against other GRN
inference methods on the distinct types of synthetic data. AUROC allows us to compare
all the methods against a random predictor. However, in the context of GRN inference,
AUPRC is more suitable than AUROC because we have unbalanced classes (see Appendix
A). The gene thicket shows a good performance with respect to the AUPRC scores on
the synthetic data, which is the opposite behavior that we observed in the curated data.

When we analyse the gene expression predictions that the gene thicket makes for genes
in the synthetic data, we observe that they tend to follow the gene expression patterns as
in Figure 6.5. This happens when the patterns do not have ambiguity as in Figure 6.2.

46

6.2 Synthetic Datasets

Figure 6.5: The gene thicket predicts the expression of genes of version two from the dyn-LI
dataset with 2000 cells.

For each type of synthetic data, there exist distinct versions with different number of
cells. This gives us the chance to determine how the performance of the GRN inference
methods changes with respect to the number of cells, as it is shown in Figure 6.6. The tree
ensemble methods are the most consistent. However, there is a noticeable impact on the
behavior for the temporal-dependent approaches when the number of cells increases. We
would expect that the more information the model has, the more accurate its predictions
would be, nevertheless, this is not always the case.

47

Chapter 6 Results

Figure 6.6: Effect of number of cells on the performance of GRN inference algorithms.

6.3 Scalability

An important characteristic of a GRN inference method is its running time, or the time
that the algorithm takes to infer the gene regulatory network. We compared the running
time of the gene thicket against the running time of other inference methods. Figure
6.7 shows the running time of the different GRN inference methods on the curated and
synthetic datasets. The time that the gene thicket takes to infer the gene regulatory
networks is better than the running time of TCDF and GENIE3 in all cases. However,
GRNBoost2 is the fastest method among all because of its boosting nature.

We take advantage of how the synthetic datasets were generated to assess the scalability
of the GRN inference methods. We computed the running time of all GRN inference
methods and observed their behavior when the number of cells increases. In Figure 6.8,
we can note that the running time of Genie3 grows exponentially with respect to the
number of cells, for GRNBoost2 the running time increment is linear, while for the deep

48

6.3 Scalability

Figure 6.7: Running time of GRN inference methods across all datasets.

learning temporal approaches we observe more stability. TCDF is the slowest method
and GRNBoost2 the fastest, followed by our method the gene thicket.

Figure 6.8: Running time of deep learning methods is similar across the number of cells. However,
for tree ensemble methods, the number of cells has a great impact in the running
time.

Figure 6.9 shows how the running time of all GRN inference methods changes with
respect to the number of cells, in each synthetic dataset type. It is evident that the
dyn-LL requires more running time from all the algorithms than the other datasets. We
believe that this is because the number of genes of the dyn-LL dataset is 18, while for
the rest of the datasets the number of genes lies between 6 and 10. This means that for
each cell we add to the dyn-LL dataset, we are adding 18 values, which will be equivalent
to add 3 cells to the dyn-CY dataset with only 6 genes.

49

Chapter 6 Results

Figure 6.9: The running time of gene thicket is consistently low through datasets and number of
cells. SINCERITIES shows significantly more running time variance, independent
of the number of cells. The number of cells has greater impact on the running time
for tree ensemble methods.

6.4 Pancreatic Endocrinogenesis

We applied the gene thicket to biological data to decipher the underlying regulatory
mechanisms of the system. Since the inspiration to build the gene thicket came from
scVelo [Ber+20], we wanted to infer a GRN and compute displacements of cells to
compare them with scVelo’s velocities. Therefore, we applied the gene thicket to the
Pancreatic Endocrinogenesis dataset [BP+19], one of the main datasets analyzed using
scVelo.

This particular dataset focused on the expression of neurogenin 3 (Ngn3) and its change
over time. The authors identified genes with a behavior similar to Ngn3, associated with
cell-fate allocation towards the distinct endocrine cell types: glucacon-producing α-cells,

50

6.4 Pancreatic Endocrinogenesis

insulin-producing β-cells, somatostatin-producing δ-cells and ghrelin-producing ε-cells.
The dataset has 3696 cells and 27998 genes grouped into eight clusters: ductal, Ngn3

low EP, Ngn3 high EP, pre-endocrine, alpha, beta, delta and epsilon cells. We used
scVelo’s preprocessing function filter_and_normalize with minimum shared counts as 20
and selecting the 2000 top variable genes. Then, we computed the velocities using the
dynamical model as it is shown in scVelo’s documentation. At the end we obtained a
dataset with 3696 cells and 2000 genes with latent time estimation and velocities.
Since no scATAC-seq data of pancreatic endocrinogenesis were available, we use the

cisTarget [Imr+15] ranking databases to obtain a list of potential target genes for each
transcription factor. In particular, we selected the first 1500 target genes from the
mm9-500bp-upstream-10species table that compresses information about 10 orthologous
species, scanning 500bp upstream of the gene bodies. More information about the ranking
databases can be found on [Imr+15].

Figure 6.10 shows the UMAP of the pancreatic endocrinogenesis dataset and the vector
fields generated using the inferred GRN by the gene thicket on the left and using the
dynamical model of scVelo on the right. Although the vector fields do not resemble each
other, we believe that this is a first step to infer velocities from a GRN structure.

Figure 6.10: Comparison between GRN displacements computed with the gene thicket and
RNA velocities from scVelo in the pancreatic endocrinogenesis dataset.

We also wondered which gene expression patterns are difficult for the gene thicket to
predict. We discovered that abrupt changes in expression present a particular challenge
for the gene thicket as it can be observed in Figure 6.11. However, for genes with a
smooth expression pattern, the gene thicket manages to capture the tendency.

51

Chapter 6 Results

Figure 6.11: Gene expression predictions using the gene thicket. The model predicts the tendency
for genes like Cpe and Sulf2, however struggles to capture abrupt changes in gene
expression patterns as in Top2a and Nnat.

52

Chapter 7

Conclusion and outlook

In this work, we developed a new method to infer gene regulatory networks from scRNA-
seq and scATAC-seq data using deep learning called the gene thicket. The gene thicket
is based on temporal convolutional neural networks with an attention mechanism for
interpretability. Our model was inspired by the TCDF architecture from [NBS19], used
in the context of stock market prediction.
What sets the gene thicket apart from other GRN inference methods is its ability to

predict the future state of each cell. To do that, the gene thicket leverages scATAC-seq
information to identify putative transcription factor - target gene pairs and then uses
a convolutional neural network to predict the expression of a gene using only previous
time steps from its putative transcription factors. With the attention mechanism, we
can construct a directed and weighted graph. To add the signs, we compute the Pearson
correlation coefficient between the transcription factor - target gene pairs.

The ability of predicting the future state of each cell, is an extremely powerful charac-
teristic of the gene thicket that enables us to estimate cell displacements, comparable to
RNA velocities. This is a first step to obtain velocities from a GRN structure.
We evaluated our method against other state-of-the-art GRN inference methods and

an adaptation of the TCDF architecture to infer GRNs that we implemented. For
the evaluation, we considered the area under the precision recall curve (AUPRC) and
the area under the receiver operating characteristic curve (AUROC) as metrics. The
AUROC allows us to compare the models against a random predictor, while the AUPRC
is suitable for classification problems with unbalanced classes. We used the curated and
synthetic datasets from [Pra+20] to evaluate the models, these were created specifically to
benchmark GRN inference methods. Our model, the gene thicket competes against other
state-of-the-art GRN methods in terms of AUPRC, AUROC and scalability (running
time).
Additionally, we presented applications on biological data. We decided to use the

pancreatic endocrinogenesis dataset from [BP+19] to have a better comparison of the
gene thicket’s cell displacements against scVelo’s velocities. However, complementary
scATAC-seq data were not yet available and we computed a putative transcription factor
- target gene list from cisTarget databases [Imr+15]. For future work, it is remaining to
apply the gene thicket on biological data, where both, scRNA-seq and scATAC.seq are

53

Chapter 7 Conclusion and outlook

available.
As far as we are aware, GRN inference methods include scATAC-seq data either as a

hard prior (CellOracle [KHM20], the gene thicket) or as an additional information to
prune an inferred graph (SCENIC [Aib+17]). Nevertheless, we believe that scATAC-seq
data information should be included as a soft prior to enable the discovery of additional
regulatory links that are not necessarily captured by this type of data. For example, the
list of transcription factor - gene target pairs can be expressed as a penalty term in the
loss function of the models.
The gene thicket uses an attention mechanism to identify the relevant transcription

factor - target gene pairs, but still does not consider any type of uncertainty estimation
nor distribution. The use of a statistical method to identify transcription factor - target
gene pairs will be more robust and may lead to a different model interpretation.
The sign of an edge in a GRN describes whether a transcription factor activates

or represses a particular target gene. The gene thicket infers the type of relationship
according to the Pearson correlation coefficient sign. If the sign is negative, the relationship
will be considered repression, and if the sign is positive, the relationship will be considered
activation. We believe that this estimation can be improved by taking into account the
temporal trends of transcription factor - target gene pairs.
Finally, one of the biggest pitfalls of the gene thicket is its lack of ability to handle

different cell trajectories. We observed that this severely affects its capacity to estimate
future gene expression patterns, leading to spurious link predictions, for which it is
necessary to adapt the model.

54

Appendix A

Metrics for network evaluation

We can evaluate GRN inference using: the Area Under the Precision Recall Curve
(AUPRC) and the Area Under the Receiver Operating Characteristic Curve (AUROC).
These metrics are commonly used to assess classifiers. In the case of GRN inference, we
will not take into account signs (activation or repression), self-loops nor weights. We will
only consider if a relationship between two genes was predicted. Then, we can think of
the problem as a binary classification task: if geneA→geneB exists, then (geneA, geneB)
should be of class 1; and if such relationship does not exist, (geneA, geneB) should be of
class 0.

A.1 Area Under the Precision Recall Curve

The AUPRC is a very useful metric when the classes that we are predicted are imbalanced
and we care about predicting the positive examples correctly, which makes it a suitable
metric to assess GRN’s. The Precision Recall Curve (PR curve) is a curve that shows
the trade-off between Precision and Recall across different decision thresholds of the
classifier. Precision (also known as Positive Predictive Value) is the ability of the model
to classify all positive examples as positive and it is defined as:

Precision = true positives
true positives + false positives (A.1)

while Recall (also known as Sensitivity) is the ability of the model not to wrongly classify
a negative example as positive, and it is defined as:

Recall = true positives
true positives + false negatives (A.2)

The x-axis of a PR curve is the Recall and the y-axis is the Precision. The PR curve
starts at the point (recall = 0, precision = 1), where everything is classified as negative;
and it ends at a point where recall= 1 and every example is classified as positive. The
rest of the points from the PR curve correspond to the precision and recall of different
decision thresholds.

55

Appendix A Metrics for network evaluation

The AUPRC is a measure of how good is the model to predict the positive examples
correctly, considering also the false positives. It can take values from zero to one, where
one is the score for perfect precision and recall. To calculate the AUPRC, we use a
method called average precision (AP) from the scikit-learn package [Ped+11]. The AP is
a weighted sum of the precisions at each threshold, where the weights are the increases
of recall. It is defined as:

AP =
∑

n

(Rn −Rn−1)Pn (A.3)

where Rn and Rn−1 are the recall scores at points n and n− 1, respectively, and Pn is
the precision at point n.

A.2 Area Under the Receiver Operating Characteristic Curve
The ROC curve is a probability curve, that can be interpreted as the probability the
classifier has to make a correct prediction. Then, the area under the ROC curve (AUROC)
represents how much a classifier can distinguish between classes. The x-axis of the ROC
curve is the false positive rate, and the y-axis is the recall, given by equation A.2. The
False Positive Rate (FPR) is defined as:

FPR = false positives
false positives + true negatives (A.4)

The baseline for the AUROC is 0.5, which means that the model does not have the
ability to distinguish between two classes. An AUROC of 1 will represent a perfect
classifier, which can distinguish the two classes with no error. On the contrary, an
AUROC of 0 means that the classifier is predicting all positive samples as negative and
vice versa.

To calculate the AUROC, we use the scikit-learn package [Ped+11].

56

Appendix B

Datasets

B.1 Curated Datasets
The curated data was created to avoid the situation of having a large-scale regulatory
network that may not capture the regulatory interactions of a specific developmental
process, as mentioned in [CM18]. This data was generated with BoolODE, a method
developed by them. BoolODE transforms boolean functions into ordinary differential
equations, adds noise, and simulates stochastic time. The simulations were performed
using four selected published boolean models: Mammalian Cortical Area Development
(mCAD) [GG10], Ventral Spinal Cord Development (VSC)[Lov+14], Hematopoietic Stem
Cell Differentiation (HSC) [Kru+11], and Gonadal Sex Determination (GSD) [Río+15].
The authors ensure that all the simulated datasets have the same number of steady
states and gene expression patterns that characterize them, as it is reported in their own
respective literature. A summary of the ground truth networks for each of the models
can be found in table B.1.

Model Number of
genes

Number of
activation
edges

Number of
inhibition
edges

Network
density

Number
of steady
states

mCAD 5 5 9 0.65 2
VSC 8 0 15 0.27 5
HSC 11 15 15 0.24 4
GSD 19 27 59 0.25 2

Table B.1: Summary of curated datasets from selected boolean models [Pra+20]. Self-loops
were ignored for the computation of Network density.

For each boolean model, the authors of [Pra+20] created ten different datasets with
two thousand cells, and later generated three different versions of each one, according
to distinct dropout rates (0, 50 and 70). In total we have 30 datasets for each boolean
model. Pseudotime values for each dataset were computed using Slingshot [Str+18].
Figure B.1 shows a clear visualization of the data and the ground truth network of each
of the models. More information about the datasets can be found in [Pra+20].

57

Appendix B Datasets

Figure B.1: Visualization of curated models. (a) Network diagrams. (b) t-SNE maps colored
by simulation time. (c) t-SNE maps colored by different cell subsets obtained using
k-means clustering of simulations, where k is the number of steady states for each
model (two for mCAD, five for VSC, four for HSC, and two for GSD). (d) t-SNE
maps colored by simulation time and pseudotime computed with Slingshot [Str+18].
Principal curves are shown in black. Source: [Pra+20].

58

B.2 Synthetic Datasets

B.2 Synthetic Datasets
The motivation of having synthetic data is to have a ground truth GRN to evaluate the
performance of GRN inference methods, and also to have a dataset that does not rely on
pseudotime inference algorithms. Six different types of synthetic data were created using
BoolODE [Pra+20]:

• Linear: a cascade of gene activations in one single trajectory, where the initial and
final states are different.

• Linear long: follows the same principle as the Linear data, but with more genes.

• Cycle: gene activations and repressions in a single trajectory, where the initial
and final state are the same.

• Bifurcating: a network with a mutual repression relationship between two genes,
resulting in two different branches, leading to two different final states.

• Bifurcating converging: similar to the bifurcating, but with the two branches
converging to a single final state.

• Trifurcating: a network that contains mutual repression relationships between
three genes, that results in three different final states.

Dataset Number of
genes

Number of
activation
edges

Number of
inhibition
edges

Number
of steady
states

Linear 7 7 1 1
Linear long 18 18 1 1
Cycle 6 3 3 0
Bifurcating 8 7 5 2
Bifurcating converging 10 13 5 1
Trifurcating 8 10 10 3

Table B.2: Summary of synthetic datasets [Pra+20].

For each one of the synthetic dataset types, the authors selected 10 different parameter
sets. For each parameter set, they performed 5000 simulations and generated five distinct
datasets with different number of cells (100, 200, 500, 2000, and 5000). In total, we have
50 different datasets of each type. Figure B.2 and Table B.2 show an overview of the
synthetic networks. More information aboout the synthetic datasets can be found in
[Pra+20].

59

Appendix B Datasets

Figure B.2: Visualization of synthetic networks. (a) Network diagrams. (b) t-SNE maps colored
by simulation time for 2000 cells. Dark points represent early stages, and light
points final states. (c) Each color corresponds to a different cluster inferred using
k-means, where k was specified as the number of expected final steady states.
Source: [Pra+20].

60

Appendix C

The gene thicket: number of blocks

The number of blocks that conform the gene thicket is perhaps the most important
hyperparameter among all. To select the number of blocks we evaluate the performance
of the gene thicket on the curated and synthetic data using the AUPRC and AUROC
metrics described on Appendix A.

In Figures C.1 and C.2, we can observe the performance of the gene thicket with one,
two and three blocks on all curated and synthetic datasets. We noticed that for curated
datasets the architecture with one block seemed to have the best behavior, while for the
synthetic data we obtained the best results when the architecture has three blocks.

Figure C.1: AUPRC and AUROC according to different number of blocks in the distinct dataset
types. The gene thicket’s architecture shows the best performance on the curated
data when having two blocks, while for synthetic data when having only one.

61

Appendix C The gene thicket: number of blocks

Figure C.2: AUPRC and AUROC according to different number of blocks on curated and
synthetic data. The gene thicket’s architecture with two blocks has the best
performance on curated data, while for synthetic data the architecture with one
block shows the best results.

62

Since we have to select a specific number of blocks to infer all the GRNs, we decided
to take the architecture with one block since it has the best performance on the curated
data, and takes considerably less time to run compared with the other architectures as it
is shown in Figure C.3. However, the number of blocks is a hyperparameter that can be
adjusted according to the data we will use.

Figure C.3: Time tend to increase when the architecture gets more complex.

63

List of Figures

2.1 Transcription and translation [Bro] . 3
2.2 RNA-seq quality control distributions with filtering decisions for a mouse

epithelium dataset from [Hab+17]. Image source: [LT19] 5
2.3 Regulatory interactions and GRNs [San+19] 7

3.1 Tn5 (green) with sequencing adapters (red and blue) binds to the open
chromatin region and cuts the DNA into fragments [Bue+13]. 10

3.2 a ATAC-seq datasets and publications are increasing exponentially b
approximate input material and preparation time of open chromatin assays
c comparison of open chromatin assays at a locus GM12878 lymphoblastoid.
([Yan+20] [Bue+13]) . 11

3.3 Successfull ATAC-seq length distribution from [Bue+13]. 12
3.4 TSS enrichment plot from [Yan+20]. Nucleosome fragments are enriched

at TSS, while mono-nucleosome fragments are enriched at flanking regions. 13
3.5 Tn5 transposase fragments and tags the accessible regions with sequencing

adapters to identify open chromatin regions (black) and transcription
factor footprints (blue). The nucleosome-free region (NFR) fragments are
represented by peaks [Yan+20]. 13

3.6 Comparison of distinct peak calling algorithms from [Che+19]. 14
3.7 Overview of Cicero by [Pli+18]. Cicero finds putative cis-regulatory

interactions through co-accessibility. 18
3.8 Example of Cicero co-accessibility links between MYOG promoter and

surrounding distal sites. Red links correspond to phase 1, while blue links
to phase 2. The height of connections indicates the magnitude of the
Cicero co-accessibility score between the connected peaks ([Pli+18]). . . . 18

3.9 Trajectories on CD34+ hematopoietic stem and progenitor cells using
Monocle3 [Tra+14]. Erythroid cells are earlier in time than Lymphoid
([SSb]). 19

3.10 Differential analysis of gene Neurod6 peaks across different cell types of
the mouse brain ([SSa]). 20

3.11 Change of promoter accessibility through time in human skeletal muscle
myoblasts (HSMM). Black line indicates the pseudotime-dependent average
from a smoothed binomial regression ([Pli+18]). 21

65

List of Figures

3.12 a Aggregate ATAC-seq footprint of CTCF transcription factor. b CTCF
footprints observed through different assays. ([Bue+13]) 21

3.13 Gene activities estimated using scATAC-seq data of cells from the mouse
brain ([Stu+20]). 23

3.14 scRNA-seq and scATAC-seq joint embedding of cells from the mouse brain
using Signac [Stu+20]. 24

4.1 Graphical representation of a neural network. 26
4.2 PReLU activation function. 27
4.3 Structure of a residual block. [Bec21] . 29
4.4 Training and validation loss through epochs. Early stopping (dotted line),

indicates the point where we should stop the training before overfitting
the data. [Vog18] . 29

4.5 Convolutional layer. The input image is represented with its three channels:
red, green and blue; the convolution kernel of size 2×2 is shown in orange;
the feature map is represented in gray. [Bec21] 30

4.6 Padding. A channel of the input image with zero padding is shown in blue.
The feature map, represented in gray, has the same size of the original
image as indicated by the green outline. [Bec21] 31

4.7 Comparison between a standard convolution (a) and a causal convolution
(b) [Kla19] . 31

4.8 Dilated convolution. The receptive field expands without loss of resolution
(without parameter increasing).[YK15] . 32

4.9 Causal dilated convolution. The combination of a causal convolution and
dilations [Kla19]. 32

4.10 Comparison between a standard convolution (a) and a depthwise separable
convolution (b) [Ben]. 33

5.1 The gene thicket’s workflow overview. scATAC-seq data is used as a
prior to obtain directed regulatory gene connections. Then, pseudotime
ordered expression profiles of transcription factors are used to predict the
pseudotime ordered expression profile of its putative target genes. The
output is a refined network with signed and weighted connections. 36

5.2 Overview of a network that predicts a target gene expression through time.
Each transcription factor time series is multiplied by an attention constant
σai, and then used as an input for a residual block denoted by

⊕
. The

residual block consists of convolutional layers with dilations, which have
PReLU activation functions and weight normalizations in between. At the
end a pointwise convolution is used to combine separable outputs into a
single future prediction for the target gene. 38

66

List of Figures

5.3 The threshold value τj is the attention score on the left side of the largest
gap gk, with k 6= 0. 40

6.1 AUPRC and AUROC of GRN Inference methods evaluated on the curated
datasets. The gene thicket has the best performance on the mCAD dataset,
while for the rest, its performance lies on the bottom two. 44

6.2 The gene thicket struggles to predict the expression of Cebpa, Gfi1, Gata1
and Gata2 in version eight from HSC dataset with 2000 cells and drop out
rate of 70. 44

6.3 Effect of dropouts on the performance of GRN inference methods. 45
6.4 AUPRC and AUROC of GRN Inference methods evaluted on the synthetic

datasets. 46
6.5 The gene thicket predicts the expression of genes of version two from the

dyn-LI dataset with 2000 cells. 47
6.6 Effect of number of cells on the performance of GRN inference algorithms. 48
6.7 Running time of GRN inference methods across all datasets. 49
6.8 Running time of deep learning methods is similar across the number of

cells. However, for tree ensemble methods, the number of cells has a great
impact in the running time. 49

6.9 The running time of gene thicket is consistently low through datasets and
number of cells. SINCERITIES shows significantly more running time
variance, independent of the number of cells. The number of cells has
greater impact on the running time for tree ensemble methods. 50

6.10 Comparison between GRN displacements computed with the gene thicket
and RNA velocities from scVelo in the pancreatic endocrinogenesis dataset. 51

6.11 Gene expression predictions using the gene thicket. The model predicts
the tendency for genes like Cpe and Sulf2, however struggles to capture
abrupt changes in gene expression patterns as in Top2a and Nnat. 52

B.1 Visualization of curated models. (a) Network diagrams. (b) t-SNE maps
colored by simulation time. (c) t-SNE maps colored by different cell subsets
obtained using k-means clustering of simulations, where k is the number
of steady states for each model (two for mCAD, five for VSC, four for
HSC, and two for GSD). (d) t-SNE maps colored by simulation time and
pseudotime computed with Slingshot [Str+18]. Principal curves are shown
in black. Source: [Pra+20]. 58

B.2 Visualization of synthetic networks. (a) Network diagrams. (b) t-SNE
maps colored by simulation time for 2000 cells. Dark points represent
early stages, and light points final states. (c) Each color corresponds to
a different cluster inferred using k-means, where k was specified as the
number of expected final steady states. Source: [Pra+20]. 60

67

List of Figures

C.1 AUPRC and AUROC according to different number of blocks in the distinct
dataset types. The gene thicket’s architecture shows the best performance
on the curated data when having two blocks, while for synthetic data when
having only one. 61

C.2 AUPRC and AUROC according to different number of blocks on curated
and synthetic data. The gene thicket’s architecture with two blocks has the
best performance on curated data, while for synthetic data the architecture
with one block shows the best results. 62

C.3 Time tend to increase when the architecture gets more complex. 63

68

List of Tables

B.1 Summary of curated datasets from selected boolean models [Pra+20].
Self-loops were ignored for the computation of Network density. 57

B.2 Summary of synthetic datasets [Pra+20]. 59

69

Bibliography

[Aib+17] S. Aibar, C. B. González-Blas, T. Moerman, H. Imrichova, G. Hulselmans, F.
Rambow, J.-C. Marine, P. Geurts, J. Aerts, J. van den Oord, et al. “SCENIC:
single-cell regulatory network inference and clustering”. In: Nature methods
14.11 (2017), pp. 1083–1086.

[AKB19] H. M. Amemiya, A. Kundaje, and A. P. Boyle. “The ENCODE blacklist:
identification of problematic regions of the genome”. In: Scientific reports
9.1 (2019), pp. 1–5.

[And10] S. Andrews. “Babraham bioinformatics-FastQC a quality control tool for
high throughput sequence data”. In: Babraham Inst (2010).

[AFV20] P.-C. Aubin-Frankowski and J.-P. Vert. “Gene regulation inference from
single-cell RNA-seq data with linear differential equations and velocity
inference”. In: Bioinformatics 36.18 (2020), pp. 4774–4780.

[AAG14] E. Azizi, E. Airoldi, and J. Galagan. “Learning modular structures from
network data and node variables”. In: International conference on machine
learning. PMLR. 2014, pp. 1440–1448.

[Azo+18] J. G. Azofeifa, M. A. Allen, J. R. Hendrix, J. D. Rubin, and R. D. Dowell.
“Enhancer RNA profiling predicts transcription factor activity”. In: Genome
research 28.3 (2018), pp. 334–344.

[BRL19] J Baglama, L Reichel, and B. Lewis. Irlba: Fast Truncated Singular Value
Decomposition and Principal Components Analysis for Large Dense and
Sparse Matrices, R package version 2.3. 3. 2019.

[BR05] J. Baglama and L. Reichel. “Augmented implicitly restarted Lanczos bidi-
agonalization methods”. In: SIAM Journal on Scientific Computing 27.1
(2005), pp. 19–42.

[BKK18a] S. Bai, J. Z. Kolter, and V. Koltun. “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling”. In: arXiv
preprint arXiv:1803.01271 (2018).

[BKK18b] S. Bai, J. Z. Kolter, and V. Koltun. “Convolutional sequence modeling
revisited”. In: (2018).

71

Bibliography

[BP+19] A. Bastidas-Ponce, S. Tritschler, L. Dony, K. Scheibner, M. Tarquis-Medina,
C. Salinno, S. Schirge, I. Burtscher, A. Böttcher, F. J. Theis, et al. “Compre-
hensive single cell mRNA profiling reveals a detailed roadmap for pancreatic
endocrinogenesis”. In: Development 146.12 (2019).

[Bec21] A. Becker. “Predicting transcription rate from multiplexed protein maps
using deep learning”. MA thesis. Technische Universität München, May
2021.

[Ben+14] S. C. Bendall, K. L. Davis, E.-a. D. Amir, M. D. Tadmor, E. F. Simonds,
T. J. Chen, D. K. Shenfeld, G. P. Nolan, and D. Pe’er. “Single-cell trajectory
detection uncovers progression and regulatory coordination in human B cell
development”. In: Cell 157.3 (2014), pp. 714–725.

[Ben] E. Bendersky. Depthwise separable convolutions for machine learning. url:
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-
for-machine-learning/. (published: 04.04.2018).

[Ben+20] M. Bentsen, P. Goymann, H. Schultheis, K. Klee, A. Petrova, R. Wiegandt,
A. Fust, J. Preussner, C. Kuenne, T. Braun, et al. “ATAC-seq footprinting
unravels kinetics of transcription factor binding during zygotic genome
activation”. In: Nature communications 11.1 (2020), pp. 1–11.

[Ber+20] V. Bergen, M. Lange, S. Peidli, F. A. Wolf, and F. J. Theis. “Generalizing
RNA velocity to transient cell states through dynamical modeling”. In:
Nature biotechnology 38.12 (2020), pp. 1408–1414.

[Bis14] C. Bishop. “Bishop-Pattern Recognition and Machine Learning-Springer
2006”. In: Antimicrob. Agents Chemother (2014), pp. 03728–14.

[Blo+08] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. “Fast unfold-
ing of communities in large networks”. In: Journal of statistical mechanics:
theory and experiment 2008.10 (2008), P10008.

[Bog12] D. F. Bogenhagen. “Mitochondrial DNA nucleoid structure”. In: Biochimica
et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1819.9-10 (2012),
pp. 914–920.

[BLU14] A. M. Bolger, M. Lohse, and B. Usadel. “Trimmomatic: a flexible trimmer
for Illumina sequence data”. In: Bioinformatics 30.15 (2014), pp. 2114–2120.

[Boy+08] A. P. Boyle, J. Guinney, G. E. Crawford, and T. S. Furey. “F-Seq: a feature
density estimator for high-throughput sequence tags”. In: Bioinformatics
24.21 (2008), pp. 2537–2538.

[Bre01] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

72

https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/
https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/

[Bre+13] P. Brennecke, S. Anders, J. K. Kim, A. A. Kołodziejczyk, X. Zhang, V.
Proserpio, B. Baying, V. Benes, S. A. Teichmann, J. C. Marioni, et al.
“Accounting for technical noise in single-cell RNA-seq experiments”. In:
Nature methods 10.11 (2013), pp. 1093–1095.

[Bro] T. Brown. Simple representation of the gene expression process. url: https:
/ / www . atdbio . com / content / 14 / Transcription - Translation - and -
Replication. (accessed: July 2021).

[BVH18] N. Bruse and S. J. Van Heeringen. “GimmeMotifs: an analysis framework
for transcription factor motif analysis”. In: BioRxiv (2018), p. 474403.

[Bue+13] J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf.
“Transposition of native chromatin for fast and sensitive epigenomic profiling
of open chromatin, DNA-binding proteins and nucleosome position”. In:
Nature methods 10.12 (2013), p. 1213.

[Bue+15] F. Buettner, K. N. Natarajan, F. P. Casale, V. Proserpio, A. Scialdone,
F. J. Theis, S. A. Teichmann, J. C. Marioni, and O. Stegle. “Computational
analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data
reveals hidden subpopulations of cells”. In: Nature biotechnology 33.2 (2015),
pp. 155–160.

[Bue+17] F. Buettner, N. Pratanwanich, D. J. McCarthy, J. C. Marioni, and O. Stegle.
“f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq”. In:
Genome biology 18.1 (2017), pp. 1–13.

[But+18] A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija. “Integrating
single-cell transcriptomic data across different conditions, technologies, and
species”. In: Nature biotechnology 36.5 (2018), pp. 411–420.

[CSB17] T. E. Chan, M. P. Stumpf, and A. C. Babtie. “Gene regulatory network
inference from single-cell data using multivariate information measures”. In:
Cell systems 5.3 (2017), pp. 251–267.

[Che+19] H. Chen, C. Lareau, T. Andreani, M. E. Vinyard, S. P. Garcia, K. Clement,
M. A. Andrade-Navarro, J. D. Buenrostro, and L. Pinello. “Assessment of
computational methods for the analysis of single-cell ATAC-seq data”. In:
Genome biology 20.1 (2019), pp. 1–25.

[Che+21] J. Chen, C. Cheong, L. Lan, X. M. Zhou, J. Liu, A. Lu, W. K. Cheung, and L.
Zhang. “DeepDRIM: a deep neural network to reconstruct cell-type-specific
gene regulatory network using single-cell RNA-seq data”. In: bioRxiv (2021).

[CM18] S. Chen and J. C. Mar. “Evaluating methods of inferring gene regulatory
networks highlights their lack of performance for single cell gene expression
data”. In: BMC bioinformatics 19.1 (2018), pp. 1–21.

73

https://www.atdbio.com/content/14/Transcription-Translation-and-Replication
https://www.atdbio.com/content/14/Transcription-Translation-and-Replication
https://www.atdbio.com/content/14/Transcription-Translation-and-Replication

Bibliography

[Cho16] F. Chollet. “Xception: deep learning with depthwise separable convolutions.
CoRR abs/1610.02357 (2016)”. In: arXiv preprint arXiv:1610.02357 (2016).

[Coi+05] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner,
and S. W. Zucker. “Geometric diffusions as a tool for harmonic analysis and
structure definition of data: Diffusion maps”. In: Proceedings of the national
academy of sciences 102.21 (2005), pp. 7426–7431.

[Col+19] M. B. Cole, D. Risso, A. Wagner, D. DeTomaso, J. Ngai, E. Purdom, S. Du-
doit, and N. Yosef. “Performance assessment and selection of normalization
procedures for single-cell RNA-seq”. In: Cell systems 8.4 (2019), pp. 315–328.

[Con+12] E. P. Consortium et al. “An integrated encyclopedia of DNA elements in
the human genome”. In: Nature 489.7414 (2012), p. 57.

[Cus+15] D. A. Cusanovich, R. Daza, A. Adey, H. A. Pliner, L. Christiansen, K. L.
Gunderson, F. J. Steemers, C. Trapnell, and J. Shendure. “Multiplex single-
cell profiling of chromatin accessibility by combinatorial cellular indexing”.
In: Science 348.6237 (2015), pp. 910–914.

[Cus+18] D. A. Cusanovich, A. J. Hill, D. Aghamirzaie, R. M. Daza, H. A. Pliner,
J. B. Berletch, G. N. Filippova, X. Huang, L. Christiansen, W. S. DeWitt,
et al. “A single-cell atlas of in vivo mammalian chromatin accessibility”. In:
Cell 174.5 (2018), pp. 1309–1324.

[Des+21] A. Deshpande, L.-F. Chu, R. Stewart, and A. Gitter. “Network inference
with granger causality ensembles on single-cell transcriptomic data”. In:
BioRxiv (2021), p. 534834.

[Dut+19] S. H. Duttke, M. W. Chang, S. Heinz, and C. Benner. “Identification and
dynamic quantification of regulatory elements using total RNA”. In: Genome
research 29.11 (2019), pp. 1836–1846.

[EY36] C. Eckart and G. Young. “The approximation of one matrix by another of
lower rank”. In: Psychometrika 1.3 (1936), pp. 211–218.

[Eic12] M. Eichler. Causal inference in time series analysis. na, 2012.
[Fan+21] R. Fang, S. Preissl, Y. Li, X. Hou, J. Lucero, X. Wang, A. Motamedi,

A. K. Shiau, X. Zhou, F. Xie, et al. “Comprehensive analysis of single cell
ATAC-seq data with SnapATAC”. In: Nature communications 12.1 (2021),
pp. 1–15.

[FHT08] J. Friedman, T. Hastie, and R. Tibshirani. “Sparse inverse covariance es-
timation with the graphical lasso”. In: Biostatistics 9.3 (2008), pp. 432–
441.

[Gasa] J. M. Gaspar. ATAC-seq guidelines. url: https : / / informatics . fas .
harvard.edu/atac-seq-guidelines.html. (published: 18.01.2019).

74

https://informatics.fas.harvard.edu/atac-seq-guidelines.html
https://informatics.fas.harvard.edu/atac-seq-guidelines.html

[Gasb] J. M. Gaspar. Genrich. url: https://github.com/jsh58/Genrich. (pub-
lished: 2018).

[Gas18a] J. M. Gaspar. “Improved peak-calling with MACS2”. In: BioRxiv (2018),
p. 496521.

[Gas18b] J. M. Gaspar. “NGmerge: merging paired-end reads via novel empirically-
derived models of sequencing errors”. In: BMC bioinformatics 19.1 (2018),
pp. 1–9.

[GG10] C. E. Giacomantonio and G. J. Goodhill. “A Boolean model of the gene
regulatory network underlying Mammalian cortical area development”. In:
PLoS computational biology 6.9 (2010), e1000936.

[GB10] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics. JMLR Workshop and
Conference Proceedings. 2010, pp. 249–256.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
[Hab+17] A. L. Haber, M. Biton, N. Rogel, R. H. Herbst, K. Shekhar, C. Smillie,

G. Burgin, T. M. Delorey, M. R. Howitt, Y. Katz, et al. “A single-cell survey
of the small intestinal epithelium”. In: Nature 551.7680 (2017), pp. 333–339.

[Hao+21] Y. Hao, S. Hao, E. Andersen-Nissen, W. M. Mauck III, S. Zheng, A. Butler,
M. J. Lee, A. J. Wilk, C. Darby, M. Zager, et al. “Integrated analysis of
multimodal single-cell data”. In: Cell (2021).

[He+15] K. He, X. Zhang, S. Ren, and J. Sun. “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification”. In: Proceedings of the
IEEE international conference on computer vision. 2015, pp. 1026–1034.

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Identity mappings in deep residual
networks”. In: European conference on computer vision. Springer. 2016,
pp. 630–645.

[Hec+09] M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, and R. Guthke. “Gene
regulatory network inference: data integration in dynamic models—a review”.
In: Biosystems 96.1 (2009), pp. 86–103.

[Hei+10] S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin, P. Laslo, J. X. Cheng,
C. Murre, H. Singh, and C. K. Glass. “Simple combinations of lineage-
determining transcription factors prime cis-regulatory elements required for
macrophage and B cell identities”. In: Molecular cell 38.4 (2010), pp. 576–
589.

[ILO15] M. M. Ibrahim, S. A. Lacadie, and U. Ohler. “JAMM: a peak finder for joint
analysis of NGS replicates”. In: Bioinformatics 31.1 (2015), pp. 48–55.

75

https://github.com/jsh58/Genrich

Bibliography

[Imr+15] H. Imrichová, G. Hulselmans, Z. Kalender Atak, D. Potier, and S. Aerts.
“i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in
human, mouse and fly”. In: Nucleic acids research 43.W1 (2015), W57–W64.

[IS15] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference
on machine learning. PMLR. 2015, pp. 448–456.

[IWG+10] A. Irrthum, L. Wehenkel, P. Geurts, et al. “Inferring regulatory networks
from expression data using tree-based methods”. In: PloS one 5.9 (2010),
e12776.

[JLR07] W. E. Johnson, C. Li, and A. Rabinovic. “Adjusting batch effects in mi-
croarray expression data using empirical Bayes methods”. In: Biostatistics
8.1 (2007), pp. 118–127.

[KHM20] K. Kamimoto, C. M. Hoffmann, and S. A. Morris. “CellOracle: Dissecting cell
identity via network inference and in silico gene perturbation”. In: bioRxiv
(2020).

[Kha+18] A. Khan, O. Fornes, A. Stigliani, M. Gheorghe, J. A. Castro-Mondragon, R.
Van Der Lee, A. Bessy, J. Cheneby, S. R. Kulkarni, G. Tan, et al. “JASPAR
2018: update of the open-access database of transcription factor binding
profiles and its web framework”. In: Nucleic acids research 46.D1 (2018),
pp. D260–D266.

[KSS14] P. V. Kharchenko, L. Silberstein, and D. T. Scadden. “Bayesian approach to
single-cell differential expression analysis”. In: Nature methods 11.7 (2014),
pp. 740–742.

[Kim15] S. Kim. “ppcor: an R package for a fast calculation to semi-partial correlation
coefficients”. In: Communications for statistical applications and methods
22.6 (2015), p. 665.

[KB14] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[Kla19] J. Klaas. Machine learning for finance: principles and practice for financial
insiders. Packt Publishing Ltd, 2019.

[Kor+19] I. Korsunsky, N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, Y.
Baglaenko, M. Brenner, P.-r. Loh, and S. Raychaudhuri. “Fast, sensitive and
accurate integration of single-cell data with Harmony”. In: Nature methods
16.12 (2019), pp. 1289–1296.

[Kru+11] J. Krumsiek, C. Marr, T. Schroeder, and F. J. Theis. “Hierarchical differenti-
ation of myeloid progenitors is encoded in the transcription factor network”.
In: PloS one 6.8 (2011), e22649.

76

[Kul+18] I. V. Kulakovskiy, I. E. Vorontsov, I. S. Yevshin, R. N. Sharipov, A. D.
Fedorova, E. I. Rumynskiy, Y. A. Medvedeva, A. Magana-Mora, V. B. Bajic,
D. A. Papatsenko, et al. “HOCOMOCO: towards a complete collection of
transcription factor binding models for human and mouse via large-scale
ChIP-Seq analysis”. In: Nucleic acids research 46.D1 (2018), pp. D252–D259.

[LS12] B. Langmead and S. L. Salzberg. “Fast gapped-read alignment with Bowtie
2”. In: Nature methods 9.4 (2012), p. 357.

[Lar+19] C. A. Lareau, F. M. Duarte, J. G. Chew, V. K. Kartha, Z. D. Burkett,
A. S. Kohlway, D. Pokholok, M. J. Aryee, F. J. Steemers, R. Lebofsky, et al.
“Droplet-based combinatorial indexing for massive-scale single-cell chromatin
accessibility”. In: Nature Biotechnology 37.8 (2019), pp. 916–924.

[LD09] H. Li and R. Durbin. “Fast and accurate short read alignment with Burrows–
Wheeler transform”. In: bioinformatics 25.14 (2009), pp. 1754–1760.

[Lin+21] Y. Lin, T.-Y. Wu, S. Wan, J. Y. Yang, Y. R. Wang, and W. H. Wong.
“scJoint: transfer learning for data integration of single-cell RNA-seq and
ATAC-seq”. In: bioRxiv (2021), pp. 2020–12.

[LWT18] M. Lotfollahi, F. A. Wolf, and F. J. Theis. “Generative modeling and latent
space arithmetics predict single-cell perturbation response across cell types,
studies and species”. In: bioRxiv (2018), p. 478503.

[Lov+14] A. Lovrics, Y. Gao, B. Juhász, I. Bock, H. M. Byrne, A. Dinnyés, and K. A.
Kovács. “Boolean modelling reveals new regulatory connections between
transcription factors orchestrating the development of the ventral spinal
cord”. In: PloS one 9.11 (2014), e111430.

[LT19] M. D. Luecken and F. J. Theis. “Current best practices in single-cell RNA-seq
analysis: a tutorial”. In: Molecular systems biology 15.6 (2019), e8746.

[LB+] A. Lun, K Bach, et al. “(2016) Pooling across cells to normalize single-cell
RNA sequencing data with many zero counts”. In: Genome Biol 17 (), p. 75.

[Mac+15] E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I.
Tirosh, A. R. Bialas, N. Kamitaki, E. M. Martersteck, et al. “Highly parallel
genome-wide expression profiling of individual cells using nanoliter droplets”.
In: Cell 161.5 (2015), pp. 1202–1214.

[Mao+16] Q. Mao, L. Wang, I. W. Tsang, and Y. Sun. “Principal graph and structure
learning based on reversed graph embedding”. In: IEEE transactions on
pattern analysis and machine intelligence 39.11 (2016), pp. 2227–2241.

[Mar11] M. Martin. “Cutadapt removes adapter sequences from high-throughput
sequencing reads”. In: EMBnet. journal 17.1 (2011), pp. 10–12.

77

Bibliography

[Mat+17] H. Matsumoto, H. Kiryu, C. Furusawa, M. S. Ko, S. B. Ko, N. Gouda, T.
Hayashi, and I. Nikaido. “SCODE: an efficient regulatory network inference
algorithm from single-cell RNA-Seq during differentiation”. In: Bioinformat-
ics 33.15 (2017), pp. 2314–2321.

[MHM18] L. McInnes, J. Healy, and J. Melville. “Umap: Uniform manifold approxima-
tion and projection for dimension reduction”. In: arXiv preprint arXiv:1802.03426
(2018).

[MB10] R. C. McLeay and T. L. Bailey. “Motif Enrichment Analysis: a unified
framework and an evaluation on ChIP data”. In: BMC bioinformatics 11.1
(2010), pp. 1–11.

[Moe+19] T. Moerman, S. Aibar Santos, C. Bravo González-Blas, J. Simm, Y. Moreau,
J. Aerts, and S. Aerts. “GRNBoost2 and Arboreto: efficient and scalable
inference of gene regulatory networks”. In: Bioinformatics 35.12 (2019),
pp. 2159–2161.

[NBS19] M. Nauta, D. Bucur, and C. Seifert. “Causal discovery with attention-
based convolutional neural networks”. In: Machine Learning and Knowledge
Extraction 1.1 (2019), pp. 312–340.

[Ntr+19] V. Ntranos, L. Yi, P. Melsted, and L. Pachter. “A discriminative learning
approach to differential expression analysis for single-cell RNA-seq”. In:
Nature methods 16.2 (2019), pp. 163–166.

[Ou+18] J. Ou, H. Liu, J. Yu, M. A. Kelliher, L. H. Castilla, N. D. Lawson, and
L. J. Zhu. “ATACseqQC: a Bioconductor package for post-alignment quality
assessment of ATAC-seq data”. In: BMC genomics 19.1 (2018), pp. 1–13.

[Pac+07] M. Pachkov, I. Erb, N. Molina, and E. Van Nimwegen. “SwissRegulon: a
database of genome-wide annotations of regulatory sites”. In: Nucleic acids
research 35.suppl_1 (2007), pp. D127–D131.

[PG+18] N. Papili Gao, S. M. Ud-Dean, O. Gandrillon, and R. Gunawan. “SINCER-
ITIES: inferring gene regulatory networks from time-stamped single cell
transcriptional expression profiles”. In: Bioinformatics 34.2 (2018), pp. 258–
266.

[Ped+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn:
Machine Learning in Python”. In: Journal of Machine Learning Research 12
(2011), pp. 2825–2830.

78

[Pic+14] S. Picelli, Å. K. Björklund, B. Reinius, S. Sagasser, G. Winberg, and R.
Sandberg. “Tn5 transposase and tagmentation procedures for massively
scaled sequencing projects”. In: Genome research 24.12 (2014), pp. 2033–
2040.

[Pli+18] H. A. Pliner, J. S. Packer, J. L. McFaline-Figueroa, D. A. Cusanovich, R. M.
Daza, D. Aghamirzaie, S. Srivatsan, X. Qiu, D. Jackson, A. Minkina, et al.
“Cicero predicts cis-regulatory DNA interactions from single-cell chromatin
accessibility data”. In: Molecular cell 71.5 (2018), pp. 858–871.

[Pol+20] K. Polański, M. D. Young, Z. Miao, K. B. Meyer, S. A. Teichmann, and
J.-E. Park. “BBKNN: fast batch alignment of single cell transcriptomes”. In:
Bioinformatics 36.3 (2020), pp. 964–965.

[PMC18] T. J. Pranzatelli, D. G. Michael, and J. A. Chiorini. “ATAC2GRN: opti-
mized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome
regulatory network inference”. In: BMC genomics 19.1 (2018), pp. 1–13.

[Pra+20] A. Pratapa, A. P. Jalihal, J. N. Law, A. Bharadwaj, and T. Murali. “Bench-
marking algorithms for gene regulatory network inference from single-cell
transcriptomic data”. In: Nature methods 17.2 (2020), pp. 147–154.

[Qiu+18] X. Qiu, A. Rahimzamani, L. Wang, Q. Mao, T. Durham, J. L. McFaline-
Figueroa, L. Saunders, C. Trapnell, and S. Kannan. “Towards inferring
causal gene regulatory networks from single cell expression measurements”.
In: BioRxiv (2018), p. 426981.

[QH10] A. R. Quinlan and I. M. Hall. “BEDTools: a flexible suite of utilities for
comparing genomic features”. In: Bioinformatics 26.6 (2010), pp. 841–842.

[Reg+17] A. Regev, S. A. Teichmann, E. S. Lander, I. Amit, C. Benoist, E. Birney,
B. Bodenmiller, P. Campbell, P. Carninci, M. Clatworthy, et al. “Science
forum: the human cell atlas”. In: elife 6 (2017), e27041.

[Río+15] O. Ríos, S. Frias, A. Rodríguez, S. Kofman, H. Merchant, L. Torres, and L.
Mendoza. “A Boolean network model of human gonadal sex determination”.
In: Theoretical Biology and Medical Modelling 12.1 (2015), pp. 1–18.

[SK16] T. Salimans and D. P. Kingma. “Weight normalization: A simple reparame-
terization to accelerate training of deep neural networks”. In: Advances in
neural information processing systems 29 (2016), pp. 901–909.

[SC+18] M. Sanchez-Castillo, D. Blanco, I. M. Tienda-Luna, M. Carrion, and Y.
Huang. “A Bayesian framework for the inference of gene regulatory networks
from time and pseudo-time series data”. In: Bioinformatics 34.6 (2018),
pp. 964–970.

[San+19] G. Sanguinetti et al. “Gene regulatory network inference: an introductory
survey”. In: Gene Regulatory Networks. Springer, 2019, pp. 1–23.

79

Bibliography

[STB20] N. P. D. Santos, L. Texari, and C. Benner. “MEIRLOP: improving score-
based motif enrichment by incorporating sequence bias covariates”. In: BMC
bioinformatics 21.1 (2020), pp. 1–22.

[Sch+17] A. N. Schep, B. Wu, J. D. Buenrostro, and W. J. Greenleaf. “chromVAR:
inferring transcription-factor-associated accessibility from single-cell epige-
nomic data”. In: Nature methods 14.10 (2017), pp. 975–978.

[She+18] T. Shen, T. Zhou, G. Long, J. Jiang, S. Wang, and C. Zhang. “Reinforced
self-attention network: a hybrid of hard and soft attention for sequence
modeling”. In: arXiv preprint arXiv:1801.10296 (2018).

[SL17] A. T. Specht and J. Li. “LEAP: constructing gene co-expression networks
for single-cell RNA-sequencing data using pseudotime ordering”. In: Bioin-
formatics 33.5 (2017), pp. 764–766.

[SS19] E. B. Stovner and P. Sætrom. “epic2 efficiently finds diffuse domains in
ChIP-seq data”. In: Bioinformatics 35.21 (2019), pp. 4392–4393.

[Str+18] K. Street, D. Risso, R. B. Fletcher, D. Das, J. Ngai, N. Yosef, E. Purdom, and
S. Dudoit. “Slingshot: cell lineage and pseudotime inference for single-cell
transcriptomics”. In: BMC genomics 19.1 (2018), pp. 1–16.

[Stu+19] T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M.
Mauck III, Y. Hao, M. Stoeckius, P. Smibert, and R. Satija. “Comprehensive
integration of single-cell data”. In: Cell 177.7 (2019), pp. 1888–1902.

[SSa] T. Stuart and A. Srivastava. Analyzing adult mouse brain scATAC-seq. url:
https://satijalab.org/signac/articles/mouse_brain_vignette.
html. (published: 10.05.2021).

[SSb] T. Stuart and A. Srivastava. Building trajectories with Monocle3. url:
https://satijalab.org/signac/articles/monocle.html. (published:
10.05.2021).

[Stu+20] T. Stuart, A. Srivastava, C. Lareau, and R. Satija. “Multimodal single-cell
chromatin analysis with Signac”. In: bioRxiv (2020).

[Sve+17] V. Svensson, K. N. Natarajan, L.-H. Ly, R. J. Miragaia, C. Labalette, I. C.
Macaulay, A. Cvejic, and S. A. Teichmann. “Power analysis of single-cell
RNA-sequencing experiments”. In: Nature methods 14.4 (2017), pp. 381–387.

[Tan+18] A. Tank, I. Covert, N. Foti, A. Shojaie, and E. Fox. “Neural Granger
Causality”. In: arXiv preprint arXiv:1802.05842 (2018).

[TL19] E. D. Tarbell and T. Liu. “HMMRATAC: a Hidden Markov ModeleR for
ATAC-seq”. In: Nucleic acids research 47.16 (2019), e91–e91.

80

https://satijalab.org/signac/articles/mouse_brain_vignette.html
https://satijalab.org/signac/articles/mouse_brain_vignette.html
https://satijalab.org/signac/articles/monocle.html

[Tra+14] C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J.
Lennon, K. J. Livak, T. S. Mikkelsen, and J. L. Rinn. “The dynamics and
regulators of cell fate decisions are revealed by pseudotemporal ordering of
single cells”. In: Nature biotechnology 32.4 (2014), p. 381.

[TAD18] I. J. Tripodi, M. A. Allen, and R. D. Dowell. “Detecting differential tran-
scription factor activity from ATAC-seq data”. In: Molecules 23.5 (2018),
p. 1136.

[VDM09] L. Van Der Maaten. “Learning a parametric embedding by preserving local
structure”. In: Artificial Intelligence and Statistics. PMLR. 2009, pp. 384–
391.

[Vas+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. “Attention is all you need”. In: Advances in
neural information processing systems. 2017, pp. 5998–6008.

[Ver+15] A. Verfaillie, H. Imrichova, R. Janky, and S. Aerts. “iRegulon and i-cisTarget:
Reconstructing Regulatory Networks Using Motif and Track Enrichment”.
In: Current protocols in bioinformatics 52.1 (2015), pp. 2–16.

[Vog18] R. Vogl. “Deep learning methods for drum transcription and drum pattern
generation”. In: Johannes Kepler University Linz, Linz (2018).

[WRY16] A. Wagner, A. Regev, and N. Yosef. “Revealing the vectors of cellular identity
with single-cell genomics”. In: Nature biotechnology 34.11 (2016), pp. 1145–
1160.

[WVE13] L. Waltman and N. J. Van Eck. “A smart local moving algorithm for large-
scale modularity-based community detection”. In: The European physical
journal B 86.11 (2013), pp. 1–14.

[Wan+12] J. Wang, J. Zhuang, S. Iyer, X.-Y. Lin, M. C. Greven, B.-H. Kim, J. Moore,
B. G. Pierce, X. Dong, D. Virgil, et al. “Factorbook. org: a Wiki-based
database for transcription factor-binding data generated by the ENCODE
consortium”. In: Nucleic acids research 41.D1 (2012), pp. D171–D176.

[Wan+20] J. Wang, A. Ma, Q. Ma, D. Xu, and T. Joshi. “Inductive inference of
gene regulatory network using supervised and semi-supervised graph neural
networks”. In: Computational and Structural Biotechnology Journal 18 (2020),
pp. 3335–3343.

[WWK18] C. Weinreb, S. Wolock, and A. M. Klein. “SPRING: a kinetic interface for
visualizing high dimensional single-cell expression data”. In: Bioinformatics
34.7 (2018), pp. 1246–1248.

[WAT18] F. A. Wolf, P. Angerer, and F. J. Theis. “SCANPY: large-scale single-cell
gene expression data analysis”. In: Genome biology 19.1 (2018), pp. 1–5.

81

Bibliography

[Yan+20] F. Yan, D. R. Powell, D. J. Curtis, and N. C. Wong. “From reads to insight:
a hitchhiker’s guide to ATAC-seq data analysis”. In: Genome biology 21.1
(2020), p. 22.

[Yin+16] W. Yin, H. Schütze, B. Xiang, and B. Zhou. “Abcnn: Attention-based
convolutional neural network for modeling sentence pairs”. In: Transactions
of the Association for Computational Linguistics 4 (2016), pp. 259–272.

[YK15] F. Yu and V. Koltun. “Multi-scale context aggregation by dilated convolu-
tions”. In: arXiv preprint arXiv:1511.07122 (2015).

[YBJ19] Y. Yuan and Z. Bar-Joseph. “Deep learning for inferring gene relationships
from single-cell expression data”. In: Proceedings of the National Academy
of Sciences 116.52 (2019), pp. 27151–27158.

[Zei+18] A. Zeisel, H. Hochgerner, P. Lönnerberg, A. Johnsson, F. Memic, J. Van
Der Zwan, M. Häring, E. Braun, L. E. Borm, G. La Manno, et al. “Molecular
architecture of the mouse nervous system”. In: Cell 174.4 (2018), pp. 999–
1014.

[Zha+88] W. Zhang et al. “Shift-invariant pattern recognition neural network and
its optical architecture”. In: Proceedings of annual conference of the Japan
Society of Applied Physics. 1988.

[Zha+11] X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and
R. Gottardo. “PICS: probabilistic inference for ChIP-seq”. In: Biometrics
67.1 (2011), pp. 151–163.

[Zha+08] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein,
C. Nusbaum, R. M. Myers, M. Brown, W. Li, et al. “Model-based analysis
of ChIP-Seq (MACS)”. In: Genome biology 9.9 (2008), pp. 1–9.

[Zhu+08] J. Zhu, B. Zhang, E. N. Smith, B. Drees, R. B. Brem, L. Kruglyak, R. E.
Bumgarner, and E. E. Schadt. “Integrating large-scale functional genomic
data to dissect the complexity of yeast regulatory networks”. In: Nature
genetics 40.7 (2008), pp. 854–861.

[Zie+17] C. Ziegenhain, B. Vieth, S. Parekh, B. Reinius, A. Guillaumet-Adkins, M.
Smets, H. Leonhardt, H. Heyn, I. Hellmann, and W. Enard. “Comparative
analysis of single-cell RNA sequencing methods”. In: Molecular cell 65.4
(2017), pp. 631–643.

[ZC20] C. Zuo and L. Chen. “Deep-joint-learning analysis model of single cell
transcriptome and open chromatin accessibility data”. In: Briefings in Bioin-
formatics (2020).

82

	Introduction
	Preprocessing and analysis of single-cell RNA sequencing data
	RNA-seq protocol
	Preprocessing
	Advanced Analysis

	Preprocessing and analysis of single-cell ATAC sequencing data
	ATAC-seq protocol
	Pre-analysis
	Core Analysis
	Advanced Analysis

	Modeling with neural networks
	Fundamentals
	Parameter optimization
	Parameter initialization
	Weight Normalization
	Residual Blocks
	Early stopping

	Convolutional neural networks
	Convolutional layer
	Temporal convolutional neural networks
	Dilated convolutions
	Depthwise separable convolutions
	Attention mechanisms

	The gene thicket: a new method to infer gene regulatory networks
	ATAC-seq data preprocessing
	RNA-seq data preprocessing
	The gene thicket
	Architecture
	Interpretability
	Sign assignment: Activation or Repression
	Causal validation

	Results
	Curated Datasets
	Synthetic Datasets
	Scalability
	Pancreatic Endocrinogenesis

	Conclusion and outlook
	Metrics for network evaluation
	Area Under the Precision Recall Curve
	Area Under the Receiver Operating Characteristic Curve

	Datasets
	Curated Datasets
	Synthetic Datasets

	The gene thicket: number of blocks
	List of Figures
	List of Tables
	Index
	Bibliography

